Synlett
DOI: 10.1055/s-0043-1763752
letter

Highly Efficient and Practical Oxidative Bromination of Electron-Rich Arenes Using S-Methyl Methanethiosulfonate as the Oxidant

Shaolong Wang
a   School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 960 2nd Section Wanjiali Road, Hunan 410114, P. R. of China
,
Yong Zhou
b   Jiangxi Tianyu Chemical Co., Ltd., North Salt Chemical Industrial City, Ji'an, Jiangxi 331300 , P. R. of China
,
Jianbo Wang
a   School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 960 2nd Section Wanjiali Road, Hunan 410114, P. R. of China
,
Ruolan Li
c   Hunan Normal University, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, No. 36 Lushan Road, Hunan 410081, P. R. of China
,
Chaoqun Huang
b   Jiangxi Tianyu Chemical Co., Ltd., North Salt Chemical Industrial City, Ji'an, Jiangxi 331300 , P. R. of China
,
Huailin Pang
b   Jiangxi Tianyu Chemical Co., Ltd., North Salt Chemical Industrial City, Ji'an, Jiangxi 331300 , P. R. of China
,
Xun Li
a   School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 960 2nd Section Wanjiali Road, Hunan 410114, P. R. of China
› Author Affiliations
These investigations were supported by Jiangxi Tianyu Chemical Co. Ltd.


Abstract

An efficient and practical method for the bromination of electron-rich arenes and heteroarenes was developed by using S-methyl methanethiosulfonate as the oxidant. All the bromine atoms were basically transferred to the brominated products, demonstrating the exceptional atom economy and practicality of the proposed protocol. The method reduces the amount of bromine required for this reaction system and obtains products in moderate to good yields.

Supporting Information



Publication History

Received: 22 December 2023

Accepted after revision: 04 April 2024

Article published online:
26 April 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Segraves NL, Crews P. J. Nat. Prod. 2005; 68: 1484
    • 3a Delia TJ, Hood RJ. Aust. J. Chem. 2015; 68: 254
    • 3b Kumar L, Mahajan T, Agarwal DD. Ind. Eng. Chem. Res. 2014; 53: 8321
    • 4a Hou JP, Li ZJ, Jia X.-D, Liu Z.-Q. Synth. Commun. 2014; 44: 181
    • 4b Schmidt VA, Quinn RK, Brusoe AT, Alexanian EJ. J. Am. Chem. Soc. 2014; 136: 14389
    • 4c Mohan RB, Reddy NC. G. Synth. Commun. 2013; 43: 2603
    • 5a Sivey JD, Bickley MA, Victor DA. Environ. Sci. Technol. 2015; 49: 4937
    • 5b de Almeida LS, de Mattos MC. S, Esteves PM. Synlett 2013; 24: 603
    • 5c Albadi J, Tajik H, Keshavarz M, Abedini M. Monatsh Chem. 2013; 144: 179
    • 6a Li H.-J, Wu Y.-C, Dai J.-H, Yan S, Cheng RJ, Qiao YY. Molecules 2014; 19: 3401
    • 6b Thais D.-A, Jaime M.-F, Javier R.-L, Mello R, Acerete R, Asensioa G, González-Núñez ME. RSC Adv. 2014; 4: 51016
  • 7 Wang J, Chen S.-B, Wang S.-G, Li J.-H. Aust. J. Chem. 2014; 68: 513
  • 8 Voskressensky LG, Golantsov NE, Maharramov AM. Synthesis 2016; 48: 615
  • 9 Dewkar GK, Narina SV, Sudalai A. Org. Lett. 2003; 5: 4501
  • 10 Song S, Sun X, Li X, Yuan Y, Jiao N. Org. Lett. 2015; 17: 2886
  • 11 Nikishin GI, Kapustina NI, Sokova LL, Bityukov OV, Terent’ev AO. RSC Adv. 2018; 8: 28632
  • 12 Ren Y.-L, Wang B, Tian X.-Z, Zhao S, Wang J. Tetrahedron Lett. 2015; 56: 6452
  • 13 Ma X, Yu Jiang M, Wang M, Tang L, Wei M, Zhou Q. Eur. J. Org. Chem. 2019; 4593
  • 14 Ling XG, Xiong Y, Zhang ST, Huang RF, Zhang XH. Chin. Chem. Lett. 2013; 24: 45
  • 15 Okamoto K, Watanabe M, Murai M, Hatano R, Ohe K. Chem. Commun. 2012; 48: 3127
  • 16 Zhu YC, Li Y, Zhang BC, Zhang FX, Yang YN, Wang XS. Angew. Chem. Int. Ed. 2018; 57: 5129
    • 17a Li H.-J, Wu Y.-C, Dai J.-H, Yan S, Cheng RJ, Qiao YY. Molecules 2014; 19: 3401
    • 17b Thais D.-A, Jaime M.-F, Javier R.-L, Mello R, Acerete R, Asensioa G, González-Núñez ME. RSC Adv. 2014; 4: 51016
    • 17c Kumar L, Mahajan T, Sharma V, Agarwal DD. Ind. Eng. Chem. Res. 2011; 50: 705
    • 17d Kong J, Galabov B, Koleva G, Zou JJ, Schaefer HF, Schleyer PV. Angew. Chem. Int. Ed. 2011; 50: 6809
    • 17e Mokhtary M, Lakouraj MM. Chin. Chem. Lett. 2011; 22: 13
    • 17f Kumar L, Mahajan T, Agarwal DD. Green Chem. 2011; 13: 2187
  • 18 Holan M, Jahn U. Org. Lett. 2014; 16: 58
  • 19 Typical Procedure of thioanisole 1a Thioanisole (1a, 62 mg, 0.5 mmol), Br2 (44 mg, 0.275 mmol, 0.55 equiv), MMTS (1.2 mg, 0.01 mmol, 0.2equiv), and CH2Cl2 (1.5 mL) were added into a tube. The mixture was stirred at room temperature for 6 h. Then, the solvent was removed. The brominated product 2b was isolated after purification by column chromatography on silica gel (hexane/EtOAc = 10:1); yield 97.44 mg, 0.48 mmol, 96%.