Subscribe to RSS
DOI: 10.1055/s-0042-1751518
Photoinduced Ligand-to-Metal Charge Transfer in Base-Metal Catalysis
The authors thank the National Institute of General Medical Sciences (NIGMS) (GM125206) for support.
![](https://www.thieme-connect.de/media/synthesis/202413/lookinside/thumbnails/ss-2023-r0342-r_10-1055_s-0042-1751518-1.jpg)
Abstract
The absorption of light by photosensitizers has been shown to offer novel reactive pathways through electronic excited state intermediates, complementing ground-state mechanisms. Such strategies have been applied in both photocatalysis and photoredox catalysis, driven by generating reactive intermediates from their long-lived excited states. One developing area is photoinduced ligand-to-metal charge transfer (LMCT) catalysis, in which coordination of a ligand to a metal center and subsequent excitation with light results in the formation of a reactive radical and a reduced metal center. This mini review concerns the foundations and recent developments on ligand-to-metal charge transfer in transition-metal catalysis, focusing on the organic transformations made possible through this mechanism.
1 Introduction
2 Iron
3 Cobalt
4 Nickel
5 Copper
6 Future Outlook and Conclusion
Key words
ligand-to-metal charge transfer - photocatalysis - base-metal catalysis - organic synthesis - photochemistry - photoredox catalysisPublication History
Received: 10 August 2023
Accepted after revision: 21 September 2023
Article published online:
21 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Orgel LE. Q. Rev. Chem. Soc. 1954; 8: 422
- 2 Endicott JF. Isr. J. Chem. 1970; 8: 209
- 3 Balzani V, Moggi L. Coord. Chem. Rev. 1990; 97: 313
- 4 Gaur K, Cruz YM, Santiago Espinoza JA, Morales Rueda CA, Loza-Rosas SA, Fernández-Vega L, Benjamín-Rivera JA, Álvarez A, Tinoco AD. J. Chem. Educ. 2020; 97: 1970
- 5 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 6 Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 7 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 8 Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
- 9 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 10 Zhang Y, Lee TS, Petersen JL, Milsmann C. J. Am. Chem. Soc. 2018; 140: 5934
- 11 De Groot LH. M, Ilic A, Schwarz J, Wärnmark K. J. Am. Chem. Soc. 2023; 145: 9369
- 12 Abderrazak Y, Bhattacharyya A, Reiser O. Angew. Chem. Int. Ed. 2021; 60: 21100
- 13 Juliá F. ChemCatChem 2022; 14: e202200916
- 14 Reichle A, Reiser O. Chem. Sci. 2023; 14: 4449
- 15 Parker CA, Bowen EJ. Proc. R. Soc. London, Ser. A 1953; 220: 104
- 16 Hatchard CG, Parker CA, Bowen EJ. Proc. R. Soc. London, Ser. A 1956; 235: 518
- 17 Inoue H, Tamaki K, Komakine N, Imoto E. Bull. Chem. Soc. Jpn. 1966; 39: 1577
- 18 Inoue H, Tamaki K, Komakine N, Imoto E. Bull. Chem. Soc. Jpn. 1967; 40: 875
- 19 Inoue H, Komakine N, Imoto E. Bull. Chem. Soc. Jpn. 1968; 41: 2726
- 20 Inoue H, Izumi M, Imoto E. Chem. Lett. 1973; 2: 571
- 21 Sugimori A, Yamada T. Bull. Chem. Soc. Jpn. 1986; 59: 3911
- 22 Barbier M. Helv. Chim. Acta 1984; 67: 866
- 23 Murayama E, Kohda A, Sato T. Chem. Lett. 1978; 7: 161
- 24 Kohda A, Ueda K, Sato T. J. Org. Chem. 1981; 46: 509
- 25 Sato T, Oikawa T, Kobayashi K. J. Org. Chem. 1985; 50: 1646
- 26 Shulpin GB, Kats MM. React. Kinet. Catal. Lett. 1990; 41: 239
- 27 Shul’pin GB, Nizova GV, Kozlov YN. New J. Chem. 1996; 20: 1243
- 28 Shul’pin GB, Kats MM. Pet. Chem. 1991; 31: 647
- 29 Takaki K, Yamamoto J, Matsushita Y, Morii H, Shishido T, Takehira K. Bull. Chem. Soc. Jpn. 2003; 76: 393
- 30 Takaki K, Yamamoto J, Komeyama K, Kawabata T, Takehira K. Bull. Chem. Soc. Jpn. 2004; 77: 2251
- 31 Wu W, He X, Fu Z, Liu Y, Wang Y, Gong X, Deng X, Wu H, Zou Y, Yu N, Yin D. J. Catal. 2012; 286: 6
- 32 Wu W, Fu Z, Wen X, Wang Y, Zou S, Meng Y, Liu Y, Kirk SR, Yin D. Appl. Catal. Gen. 2014; 469: 483
- 33 Li Z, Wang X, Xia S, Jin J. Org. Lett. 2019; 21: 4259
- 34 Feng G, Wang X, Jin J. Eur. J. Org. Chem. 2019; 6728
- 35 Luo Z, Meng Y, Gong X, Wu J, Zhang Y, Ye L, Zhu C. Chin. J. Chem. 2020; 38: 173
- 36 Kang YC, Treacy SM, Rovis T. ACS Catal. 2021; 11: 7442
- 37 Jin Y, Wang L, Zhang Q, Zhang Y, Liao Q, Duan C. Green. Chem. 2021; 23: 9406
- 38 Zhang Q, Liu S, Lei J, Zhang Y, Meng C, Duan C, Jin Y. Org. Lett. 2022; 24: 1901
- 39 Kang YC, Treacy SM, Rovis T. Synlett 2021; 32: 1767
- 40 Guo J.-J, Hu A, Chen Y, Sun J, Tang H, Zuo Z. Angew. Chem. Int. Ed. 2016; 55: 15319
- 41 Hu A, Guo J.-J, Pan H, Tang H, Gao Z, Zuo Z. J. Am. Chem. Soc. 2018; 140: 1612
- 42 Hu A, Guo J.-J, Pan H, Zuo Z. Science 2018; 361: 668
- 43 An Q, Wang Z, Chen Y, Wang X, Zhang K, Pan H, Liu W, Zuo Z. J. Am. Chem. Soc. 2020; 142: 6216
- 44 Yang Q, Wang Y.-H, Qiao Y, Gau M, Carroll PJ, Walsh PJ, Schelter EJ. Science 2021; 372: 847
- 45 An Q, Xing Y.-Y, Pu R, Jia M, Chen Y, Hu A, Zhang S.-Q, Yu N, Du J, Zhang Y, Chen J, Liu W, Hong X, Zuo Z. J. Am. Chem. Soc. 2023; 145: 359
- 46 Xue T, Zhang Z, Zeng R. Org. Lett. 2022; 24: 977
- 47 Liu W, Wu Q, Wang M, Huang Y, Hu P. Org. Lett. 2021; 23: 8413
- 48 Xiong N, Li Y, Zeng R. Org. Lett. 2021; 23: 8968
- 49 Gonzalez MI, Gygi D, Qin Y, Zhu Q, Johnson EJ, Chen Y.-S, Nocera DG. J. Am. Chem. Soc. 2022; 144: 1464
- 50 Oh S, Stache EE. J. Am. Chem. Soc. 2022; 144: 5745
- 51 Niu B, Sachidanandan K, Cooke MV, Casey TE, Laulhé S. Org. Lett. 2022; 24: 4524
- 52 Xiong N, Dong Y, Xu B, Li Y, Zeng R. Org. Lett. 2022; 24: 4766
- 53 Ni H, Li C, Shi X, Hu X, Mao H. J. Org. Chem. 2022; 87: 9797
- 54 Zhang Y, Qian J, Wang M, Huang Y, Hu P. Org. Lett. 2022; 24: 5972
- 55 Dai Z.-Y, Zhang S.-Q, Hong X, Wang P.-S, Gong L.-Z. Chem. Catal. 2022; 2: 1211
- 56 Xiong N, Li Y, Zeng R. ACS Catal. 2023; 13: 1678
- 57 Chinchole A, Henriquez MA, Cortes-Arriagada D, Cabrera AR, Reiser O. ACS Catal. 2022; 12: 13549
- 58 Lutovsky GA, Gockel SN, Bundesmann MW, Bagley SW, Yoon TP. Chem 2023; 9: 1610
- 59 Hoffman MZ, Kantrowitz ER, Endicott JF. J. Phys. Chem. 1971; 75: 1914
- 60 Roche TS, Endicott JF. Inorg. Chem. 1974; 13: 1575
- 61 Giedyk M, Goliszewska K, Gryko D. Chem. Soc. Rev. 2015; 44: 3391
- 62 Wdowik T, Gryko D. ACS Catal. 2022; 12: 6517
- 63 Giese B, Hartung J, He J, Hüter O, Koch A. Angew. Chem., Int. Ed. Engl. 1989; 28: 325
- 64 Weiss ME, Kreis LM, Lauber A, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 11125
- 65 Kreis LM, Krautwald S, Pfeiffer N, Martin RE, Carreira EM. Org. Lett. 2013; 15: 1634
- 66 Prina Cerai G, Morandi B. Chem. Commun. 2016; 52: 9769
- 67 Ociepa M, Baka O, Narodowiec J, Gryko D. Adv. Synth. Catal. 2017; 359: 3560
- 68 Komeyama K, Michiyuki T, Teshima Y, Osaka I. RSC Adv. 2021; 11: 3539
- 69 Ociepa M, Wierzba AJ, Turkowska J, Gryko D. J. Am. Chem. Soc. 2020; 142: 5355
- 70 Potrząsaj A, Musiejuk M, Chaładaj W, Giedyk M, Gryko D. J. Am. Chem. Soc. 2021; 143: 9368
- 71 Potrząsaj A, Ociepa M, Chaładaj W, Gryko D. Org. Lett. 2022; 24: 2469
- 72 Ruhl KE, Rovis T. J. Am. Chem. Soc. 2016; 138: 15527
- 73 Ravetz BD, Wang JY, Ruhl KE, Rovis T. ACS Catal. 2019; 9: 200
- 74 West JG, Huang D, Sorensen EJ. Nat. Commun. 2015; 6: 10093
- 75 Sun X, Chen J, Ritter T. Nat. Chem. 2018; 10: 1229
- 76 Zhou M.-J, Zhang L, Liu G, Xu C, Huang Z. J. Am. Chem. Soc. 2021; 143: 16470
- 77 Zhao H, McMillan AJ, Constantin T, Mykura RC, Juliá F, Leonori D. J. Am. Chem. Soc. 2021; 143: 14806
- 78 Hwang SJ, Powers DC, Maher AG, Anderson BL, Hadt RG, Zheng S.-L, Chen Y.-S, Nocera DG. J. Am. Chem. Soc. 2015; 137: 6472
- 79 Hwang SJ, Anderson BL, Powers DC, Maher AG, Hadt RG, Nocera DG. Organometallics 2015; 34: 4766
- 80 Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
- 81 Nielsen MK, Shields BJ, Liu J, Williams MJ, Zacuto MJ, Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 7191
- 82 Kariofillis SK, Shields BJ, Tekle-Smith MA, Zacuto MJ, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7683
- 83 Kariofillis SK, Doyle AG. Acc. Chem. Res. 2021; 54: 988
- 84 Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
- 85 Maity B, Scott TR, Stroscio GD, Gagliardi L, Cavallo L. ACS Catal. 2022; 12: 13215
- 86 Deng H.-P, Fan X.-Z, Chen Z.-H, Xu Q.-H, Wu J. J. Am. Chem. Soc. 2017; 139: 13579
- 87 Shu X, Zhong D, Lin Y, Qin X, Huo H. J. Am. Chem. Soc. 2022; 144: 8797
- 88 Huo L, Li X, Zhao Y, Li L, Chu L. J. Am. Chem. Soc. 2023; 145: 9876
- 89 Ting SI, Garakyaraghi S, Taliaferro CM, Shields BJ, Scholes GD, Castellano FN, Doyle AG. J. Am. Chem. Soc. 2020; 142: 5800
- 90 Cagan DA, Bím D, Silva B, Kazmierczak NP, McNicholas BJ, Hadt RG. J. Am. Chem. Soc. 2022; 144: 6516
- 91 Zhang X, Shen Y, Rovis T. J. Am. Chem. Soc. 2023; 145: 3294
- 92 Kochi JK. J. Am. Chem. Soc. 1962; 84: 2121
- 93 Mereshchenko A, Olshin P, Karimov A, Skripkin M, Burkov K, Tver’yanovich Y, Tarnovsky A. Chem. Phys. Lett. 2014; 615: 105
- 94 Hossain A, Vidyasagar A, Eichinger C, Lankes C, Phan J, Rehbein J, Reiser O. Angew. Chem. Int. Ed. 2018; 57: 8288
- 95 Hossain A, Engl S, Lutsker E, Reiser O. ACS Catal. 2019; 9: 1103
- 96 Lian P, Long W, Li J, Zheng Y, Wan X. Angew. Chem. Int. Ed. 2020; 59: 23603
- 97 Treacy SM, Rovis T. J. Am. Chem. Soc. 2021; 143: 2729
- 98 Lian P, Li R, Wang L, Wan X, Xiang Z, Wan X. Org. Chem. Front. 2022; 9: 4924
- 99 He X, Chang H, Zhao Y, Li X, Liu S, Zang Z, Zhou C, Cai G. Chem. Asian J. 2023; 18: e202200954
- 100 Charpe VP, Gupta M, Hwang KC. ChemSusChem 2022; 15: e202200957
- 101 Li W, Liu J, Zhou M, Ma L, Zhang M. Org. Biomol. Chem. 2022; 20: 6667
- 102 Xu P, López-Rojas P, Ritter T. J. Am. Chem. Soc. 2021; 143: 5349
- 103 Su W, Xu P, Ritter T. Angew. Chem. Int. Ed. 2021; 60: 24012
- 104 Xu P, Su W, Ritter T. Chem. Sci. 2022; 13: 13611
- 105 Su W, Xu P, Petzold R, Yan J, Ritter T. Org. Lett. 2023; 25: 1025
- 106 Li QY, Gockel SN, Lutovsky GA, DeGlopper KS, Baldwin NJ, Bundesmann MW, Tucker JW, Bagley SW, Yoon TP. Nat. Chem. 2022; 14: 94
- 107 Dow NW, Pedersen PS, Chen TQ, Blakemore DC, Dechert-Schmitt A.-M, Knauber T, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 6163
- 108 Chen TQ, Pedersen PS, Dow NW, Fayad R, Hauke CE, Rosko MC, Danilov EO, Blakemore DC, Dechert-Schmitt A.-M, Knauber T, Castellano FN, MacMillan DW. C. J. Am. Chem. Soc. 2022; 144: 8296
- 109 Li Y, Zhou K, Wen Z, Cao S, Shen X, Lei M, Gong L. J. Am. Chem. Soc. 2018; 140: 15850
- 110 Xin H, Duan X.-H, Yang M, Zhang Y, Guo L.-N. J. Org. Chem. 2021; 86: 8263
- 111 Katta N, Zhao Q.-Q, Mandal T, Reiser O. ACS Catal. 2022; 12: 14398
- 112 Reichle A, Sterzel H, Kreitmeier P, Fayad R, Castellano FN, Rehbein J, Reiser O. Chem. Commun. 2022; 58: 4456
- 113 Kumar M, Verma S, Mishra V, Reiser O, Verma AK. J. Org. Chem. 2022; 87: 6263
- 114 Mandal T, Katta N, Paps H, Reiser O. ACS Org. Inorg. Au 2023; 3: 171