Semin Respir Crit Care Med 2022; 43(04): 480-491
DOI: 10.1055/s-0042-1749368
Review Article

Therapeutic Bronchoscopy for Lung Nodules: Where Are We Now?

Erik Folch
1   Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
,
Yanglin Guo
2   Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi
,
Michal Senitko
2   Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi
3   Division of Cardiothoracic Surgery, University of Mississippi Medical Center, Jackson, Mississippi
› Author Affiliations

Abstract

Lobar resection has been the established standard of care for peripheral early-stage non—small cell lung cancer (NSCLC). Over the last few years, surgical lung sparing approach (sublobar resection [SLR]) has been compared with lobar resection in T1N0 NSCLC. Three nonsurgical options are available in those patients who have a prohibitive surgical risk, and those who refuse surgery: stereotactic body radiotherapy (SBRT), percutaneous ablation, and bronchoscopic ablation. Local ablation involves placement of a probe into a tumor, and subsequent application of either heat or cold energy, pulsing electrical fields, or placement of radioactive source under an image guidance to create a zone of cell death that encompasses the targeted lesion and an ablation margin. Despite being in their infancy, the bronchoscopic ablative techniques are undergoing rapid research, as they extrapolate a significant knowledge-base from the percutaneous techniques that have been in the radiologist's armamentarium since 2000. Here, we discuss selected endoscopic and percutaneous thermal and non-thermal therapies with the focus on their efficacy and safety.



Publication History

Article published online:
14 September 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Howington JA, Blum MG, Chang AC, Balekian AA, Murthy SC. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143 (05) 278-313
  • 2 Suzuki K, Saji H, Aokage K. et al; West Japan Oncology Group, Japan Clinical Oncology Group. Comparison of pulmonary segmentectomy and lobectomy: safety results of a randomized trial. J Thorac Cardiovasc Surg 2019; 158 (03) 895-907
  • 3 Altorki NK, Wang X, Wigle D. et al. Perioperative mortality and morbidity after sublobar versus lobar resection for early-stage non-small-cell lung cancer: post-hoc analysis of an international, randomised, phase 3 trial (CALGB/Alliance 140503). Lancet Respir Med 2018; 6 (12) 915-924
  • 4 Raman V, Jawitz OK, Voigt SL. et al. The effect of tumor size and histologic findings on outcomes after segmentectomy vs lobectomy for clinically node-negative non-small cell lung cancer. Chest 2021; 159 (01) 390-400
  • 5 Dupuy DE, Zagoria RJ, Akerley W, Mayo-Smith WW, Kavanagh PV, Safran H. Percutaneous radiofrequency ablation of malignancies in the lung. AJR Am J Roentgenol 2000; 174 (01) 57-59
  • 6 Sun B, Brooks ED, Komaki RU. et al. 7-year follow-up after stereotactic ablative radiotherapy for patients with stage I non-small cell lung cancer: results of a phase 2 clinical trial. Cancer 2017; 123 (16) 3031-3039
  • 7 de Baere T, Tselikas L, Catena V, Buy X, Deschamps F, Palussière J. Percutaneous thermal ablation of primary lung cancer. Diagn Interv Imaging 2016; 97 (10) 1019-1024
  • 8 Dupuy DE, DiPetrillo T, Gandhi S. et al. Radiofrequency ablation followed by conventional radiotherapy for medically inoperable stage I non-small cell lung cancer. Chest 2006; 129 (03) 738-745
  • 9 Dupuy DE, Fernando HC, Hillman S. et al. Radiofrequency ablation of stage IA non-small cell lung cancer in medically inoperable patients: results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer 2015; 121 (19) 3491-3498
  • 10 Hörner-Rieber J, Dern J, Bernhardt D. et al. Parenchymal and functional lung changes after stereotactic body radiotherapy for early-stage non-small cell lung cancer-experiences from a single institution. Front Oncol 2017; 7: 215
  • 11 Welter S, Cheufou D, Sommerwerck U, Maletzki F, Stamatis G. Changes in lung function parameters after wedge resections: a prospective evaluation of patients undergoing metastasectomy. Chest 2012; 141 (06) 1482-1489
  • 12 Timmerman R, Paulus R, Galvin J. et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 2010; 303 (11) 1070-1076
  • 13 Lam A, Yoshida EJ, Bui K, Fernando D, Nelson K, Abi-Jaoudeh N. A national cancer database analysis of radiofrequency ablation versus stereotactic body radiotherapy in early-stage non-small cell lung cancer. J Vasc Interv Radiol 2018; 29 (09) 1211-1217.e1
  • 14 Zeng C. Thermal ablation versus wedge resection for stage I non-small cell lung cancer based on the eighth edition of TNM Classification: a population based study of the US SEER Database. Front Oncol 2020; 10: 571684
  • 15 Sandler KA, Abtin F, Suh R. et al. A prospective phase 2 study evaluating safety and efficacy of combining stereotactic body radiation therapy with heat-based ablation for centrally located lung tumors. Int J Radiat Oncol Biol Phys 2018; 101 (03) 564-573
  • 16 Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology 1998; 37 (03) 171-186
  • 17 Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics 2005; 25 (Suppl. 01) S69-S83
  • 18 Healey TT, March BT, Baird G, Dupuy DE. Microwave ablation for lung neoplasms: a retrospective analysis of long-term results. J Vasc Interv Radiol 2017; 28 (02) 206-211
  • 19 Ferguson J, Egressy K, Schefelker R. et al. Bronchoscopically-guided microwave ablation in the lung. Chest 2013; 144: 87A
  • 20 Sebek J, Kramer S, Rocha R. et al. Bronchoscopically delivered microwave ablation in an in vivo porcine lung model. ERJ Open Res 2020; 6 (04) 00146-02020
  • 21 Lau K, Lau R, Baranowski R, Ng C. Late breaking abstract-Bronchoscopic microwave ablation of peripheral lung tumors. Eur Respir J 2021; 58 (Suppl. 65) OA230 DOI: 10.1183/13993003.congress-2021.OA230.
  • 22 Chan JWY, Lau RWH, Ngai JCL. et al. Transbronchial microwave ablation of lung nodules with electromagnetic navigation bronchoscopy guidance-a novel technique and initial experience with 30 cases. Transl Lung Cancer Res 2021; 10 (04) 1608-1622
  • 23 Pritchett M, Reisenauer J, Kern R. et al. Image-guided transbronchial microwave ablation of peripheral primary lung tumors with a flexible probe: first in US experience. J Chest 2020; 158: A1452-A1453
  • 24 Jiang N, Zhang L, Hao Y. et al. Combination of electromagnetic navigation bronchoscopy-guided microwave ablation and thoracoscopic resection: an alternative for treatment of multiple pulmonary nodules. Thorac Cancer 2020; 11 (06) 1728-1733
  • 25 Hiraki T, Gobara H, Fujiwara H. et al. Lung cancer ablation: complications. Semin Intervent Radiol 2013; 30 (02) 169-175
  • 26 Tsushima K, Koizumi T, Tanabe T. et al. Bronchoscopy-guided radiofrequency ablation as a potential novel therapeutic tool. Eur Respir J 2007; 29 (06) 1193-1200
  • 27 Koizumi T, Tsushima K, Tanabe T. et al. Bronchoscopy-guided cooled radiofrequency ablation as a novel intervention therapy for peripheral lung cancer. Respiration 2015; 90 (01) 47-55
  • 28 Xie F, Zheng X, Xiao B, Han B, Herth FJF, Sun J. Navigation bronchoscopy-guided radiofrequency ablation for nonsurgical peripheral pulmonary tumors. Respiration 2017; 94 (03) 293-298
  • 29 Senitko M, Oberg CL, Abraham GE, Hillegass WB, Akhtar I, Folch E. Microwave ablation for malignant central airway obstruction: a pilot study. Respiration 2022; 101 (07) 666-674
  • 30 Kim C. Understanding the nuances of microwave ablation for more accurate post-treatment assessment. Future Oncol 2018; 14 (17) 1755-1764
  • 31 Brace CL, Hinshaw JL, Laeseke PF, Sampson LA, Lee Jr FT. Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model. Radiology 2009; 251 (03) 705-711
  • 32 de Baere T, Tselikas L, Catena V, Buy X, Deschamps F, Palussière J. Percutaneous thermal ablation of primary lung cancer. Diagn Interv Imaging 2016; 97 (10) 1019-1024
  • 33 Shi F, Li G, Zhou Z. et al. Microwave ablation versus radiofrequency ablation for the treatment of pulmonary tumors. Oncotarget 2017; 8 (65) 109791-109798
  • 34 Folch E, Mehta AC. Airway interventions in the tracheobronchial tree. Semin Respir Crit Care Med 2008; 29 (04) 441-452
  • 35 Wang H, Littrup PJ, Duan Y, Zhang Y, Feng H, Nie Z. Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology 2005; 235 (01) 289-298
  • 36 Moore W, Talati R, Bhattacharji P, Bilfinger T. Five-year survival after cryoablation of stage I non-small cell lung cancer in medically inoperable patients. J Vasc Interv Radiol 2015; 26 (03) 312-319
  • 37 Callstrom MR, Woodrum DA, Nichols FC. et al. Multicenter study of metastatic lung tumors targeted by interventional cryoablation evaluation (SOLSTICE). J Thorac Oncol 2020; 15 (07) 1200-1209
  • 38 Yamauchi Y, Izumi Y, Hashimoto K. et al. Percutaneous cryoablation for the treatment of medically inoperable stage I non-small cell lung cancer. PLoS One 2012; 7 (03) e33223
  • 39 Vieira T, Stern JB, Girard P, Caliandro R. Endobronchial treatment of peripheral tumors: ongoing development and perspectives. J Thorac Dis 2018; 10 (Suppl. 10) S1163-S1167
  • 40 Rubinsky B, Onik G, Mikus P. Irreversible electroporation: a new ablation modality–clinical implications. Technol Cancer Res Treat 2007; 6 (01) 37-48
  • 41 Weaver JC. Electroporation: a general phenomenon for manipulating cells and tissues. J Cell Biochem 1993; 51 (04) 426-435
  • 42 Miller L, Leor J, Rubinsky B. Cancer cells ablation with irreversible electroporation. Technol Cancer Res Treat 2005; 4 (06) 699-705
  • 43 Al-Sakere B, André F, Bernat C. et al. Tumor ablation with irreversible electroporation. PLoS One 2007; 2 (11) e1135
  • 44 Davalos RV, Mir IL, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng 2005; 33 (02) 223-231
  • 45 Maor E, Ivorra A, Leor J, Rubinsky B. The effect of irreversible electroporation on blood vessels. Technol Cancer Res Treat 2007; 6 (04) 307-312
  • 46 Ricke J, Jürgens JH, Deschamps F. et al. Irreversible electroporation (IRE) fails to demonstrate efficacy in a prospective multicenter phase II trial on lung malignancies: the ALICE trial. Cardiovasc Intervent Radiol 2015; 38 (02) 401-408
  • 47 Valipour A, Fernandez-Bussy S, Ing AJ. et al. Bronchial rheoplasty for treatment of chronic bronchitis. Twelve-month results from a multicenter clinical trial. Am J Respir Crit Care Med 2020; 202 (05) 681-689
  • 48 Kobayashi T, Kaneko M, Sumi M, Kubota K, Kondo H. CT-assisted transbronchial brachytherapy for small peripheral lung cancer. Jpn J Clin Oncol 2000; 30 (02) 109-112
  • 49 Harms W, Krempien R, Grehn C, Hensley F, Debus J, Becker HD. Electromagnetically navigated brachytherapy as a new treatment option for peripheral pulmonary tumors. Strahlenther Onkol 2006; 182 (02) 108-111
  • 50 Welch BT, Brinjikji W, Schmit GD. et al. A national analysis of the complications, cost, and mortality of percutaneous lung ablation. J Vasc Interv Radiol 2015; 26 (06) 787-791
  • 51 Kashima M, Yamakado K, Takaki H. et al. Complications after 1000 lung radiofrequency ablation sessions in 420 patients: a single center's experiences. Am J Roentgenol 2011; 197 (04) W576-80
  • 52 Lee KS, Takaki H, Yarmohammadi H. et al. Pleural puncture that excludes the ablation zone decreases the risk of pneumothorax after percutaneous microwave ablation in porcine lung. J Vasc Interv Radiol 2015; 26 (07) 1052-1058
  • 53 de Baere T, Farouil G, Deschamps F. Lung cancer ablation: what is the evidence?. Semin Intervent Radiol 2013; 30 (02) 151-156
  • 54 Folch EE, Bowling MR, Pritchett MA. et al; NAVIGATE Study Investigators. NAVIGATE 24-month results: electromagnetic navigation bronchoscopy for pulmonary lesions at 37 centers in Europe and the United States. J Thorac Oncol 2022; 17 (04) 519-531
  • 55 Simoff MJ, Pritchett MA, Reisenauer JS. et al. Shape-sensing robotic-assisted bronchoscopy for pulmonary nodules: initial multicenter experience using the Ion™ Endoluminal System. BMC Pulm Med 2021; 21 (01) 322
  • 56 Zheng A, Yang X, Ye X. et al. Bronchopleural fistula after lung ablation: Experience in two cases and literature review. Indian J Cancer 2015; 52 (Suppl. 02) e41-e46
  • 57 Hiraki T, Gobara H, Fujiwara H. et al. Lung cancer ablation: complications. Semin Intervent Radiol 2013; 30 (02) 169-175
  • 58 Cannella M, Cornelis F, Descat E. et al. Bronchopleural fistula after radiofrequency ablation of lung tumours. Cardiovasc Intervent Radiol 2011; 34 (Suppl. 02) S171-S174
  • 59 Inoue M, Nakatsuka S, Yashiro H. et al. Percutaneous cryoablation of lung tumors: feasibility and safety. J Vasc Interv Radiol 2012; 23 (03) 295-302 , quiz 305
  • 60 Yuan Z, Wang Y, Zhang J, Zheng J, Li W. A meta-analysis of clinical outcomes after radiofrequency ablation and microwave ablation for lung cancer and pulmonary metastases. J Am Coll Radiol 2019; 16 (03) 302-314
  • 61 Healey TT, March BT, Baird G, Dupuy DE. Microwave ablation for lung neoplasms: a retrospective analysis of long-term results. J Vasc Interv Radiol 2017; 28 (02) 206-211
  • 62 Sandler KA, Abtin F, Suh R. et al. A prospective phase 2 study evaluating safety and efficacy of combining stereotactic body radiation therapy with heat-based ablation for centrally located lung tumors. Int J Radiat Oncol Biol Phys 2018; 101 (03) 564-573
  • 63 Folch E, Mittal A, Oberg C. Robotic bronchoscopy and future directions of interventional pulmonology. Curr Opin Pulm Med 2022; 28 (01) 37-44
  • 64 Scott WJ, Howington J, Feigenberg S, Movsas B, Pisters K. American College of Chest Physicians. Treatment of non-small cell lung cancer stage I and stage II: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 2007; 132 (3 Suppl): 234S-242S
  • 65 Flores RM, Park BJ, Dycoco J. et al. Lobectomy by video-assisted thoracic surgery (VATS) versus thoracotomy for lung cancer. J Thorac Cardiovasc Surg 2009; 138 (01) 11-18
  • 66 Mery CM, Pappas AN, Bueno R. et al. Similar long-term survival of elderly patients with non-small cell lung cancer treated with lobectomy or wedge resection within the surveillance, epidemiology, and end results database. Chest 2005; 128 (01) 237-245
  • 67 Ghosh S, Sujendran V, Alexiou C, Beggs L, Beggs D. Long term results of surgery versus continuous hyperfractionated accelerated radiotherapy (CHART) in patients aged >70 years with stage 1 non-small cell lung cancer. Eur J Cardiothorac Surg 2003; 24 (06) 1002-1007
  • 68 Grutters JP, Kessels AG, Pijls-Johannesma M, De Ruysscher D, Joore MA, Lambin P. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol 2010; 95 (01) 32-40
  • 69 Zheng X, Schipper M, Kidwell K. et al. Survival outcome after stereotactic body radiation therapy and surgery for stage I non-small cell lung cancer: a meta-analysis. Int J Radiat Oncol Biol Phys 2014; 90 (03) 603-611
  • 70 Klapper JA, Hittinger SA, Denlinger CE. Alternatives to lobectomy for high-risk patients with early-stage non-small cell lung cancer. Ann Thorac Surg 2017; 103 (04) 1330-1339
  • 71 Gauden S, Ramsay J, Tripcony L. The curative treatment by radiotherapy alone of stage I non-small cell carcinoma of the lung. Chest 1995; 108 (05) 1278-1282
  • 72 Simon CJ, Dupuy DE, DiPetrillo TA, Safran HP, Grieco CA, Ng T, Mayo-Smith WW. Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology 2007; 243 (01) 268-275
  • 73 Kodama H, Yamakado K, Takaki H. et al. Lung radiofrequency ablation for the treatment of unresectable recurrent non-small-cell lung cancer after surgical intervention. Cardiovasc Intervent Radiol 2012; 35 (03) 563-569
  • 74 Yang X, Ye X, Zheng A, Huang G, Ni X, Wang J, Han X, Li W, Wei Z. Percutaneous microwave ablation of stage I medically inoperable non-small cell lung cancer: clinical evaluation of 47 cases. J Surg Oncol 2014; 110 (06) 758-763
  • 75 Zheng A, Wang X, Yang X, Wang W, Huang G, Gai Y, Ye X. Major complications after lung microwave ablation: a single-center experience on 204 sessions. Ann Thorac Surg 2014; 98 (01) 243-248
  • 76 Tsakok MT, Little MW, Hynes G, Millington RS, Boardman P, Gleeson FV, Anderson EM. Local control, safety, and survival following image-guided percutaneous microwave thermal ablation in primary lung malignancy. Clin Radiol 2019; 74 (01) 80.e19-80.e26
  • 77 Zhang YS, Niu LZ, Zhan K. et al. Percutaneous imaging-guided cryoablation for lung cancer. J Thorac Dis 2016; 8 (Suppl. 09) S705-S709
  • 78 Inoue M, Nakatsuka S, Jinzaki M. Cryoablation of early-stage primary lung cancer. Biomed Res Int 2014; 2014: 521691