Synthesis 2022; 54(09): 2225-2232
DOI: 10.1055/s-0041-1737805
paper

First Total Syntheses of (±)-Callyspongidic Acids and 2-epi-(±)-Callyspongidic Acids

Sayani Das
,
Anju Bala
,
Kapil Sharma
,
This work was supported by the Science and Engineering Research Board, SERB (DST) (file no YSS/2015/000660).


Abstract

The first total syntheses of (±)-callyspongidic acids and 2-epi-(±)-callyspongidic acids were achieved in high overall yield from epoxy ester derived from commercially available l-(+)-tartaric acid. The key features of these syntheses are the stereoselective opening of epoxide with organocuprates and the chemoselective addition of Grignard reagent to ketone in the presence of ester. The synthetic route reported here is operationally simple, very short and amenable for the synthesis of several analogues of this class.

Supporting Information



Publikationsverlauf

Eingereicht: 15. November 2021

Angenommen nach Revision: 13. Dezember 2021

Artikel online veröffentlicht:
01. Februar 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Laport MS, Santos OC. S, Muricy G. Curr. Pharm. Biotechnol. 2009; 10: 86
  • 2 Carballo JL, Cruz-Barraza JA, Vega C, Nava H, Chavez-Fuentes M. Sci. Rep. 2019; 9: 9409
  • 3 Suksamrarn A, Jankam A, Tarnchompoo B, Putchakarn S. J. Nat. Prod. 2002; 65: 1194
  • 4 Cruz-Barraza JA, Carballo JL. Zool. Stud. 2008; 47: 741
  • 5 Calabro K, Chalen BE, Genta-Jouve G, Jaramillo KB, Dominguez C, de la Cruz M, Cautain B, Reyes F, Thomas OP, Rodriguez J. J. Nat. Prod. 2018; 81: 2301
    • 6a Harris GH, Dufresne C, Joshua H, Koch LA, Zink DL, Salmon PM, Goklen KE, Kurtz MM, Rew DJ, Bergstrom JD, Wilson KE. Bioorg. Med. Chem. Lett. 1995; 5: 2403
    • 6b Watanabe S, Hirai H, Kambara T, Kojima Y, Nishida H, Sugiura A, Yamauchi Y, Yoshikawa N, Harwood HJ. Jr, Huang LH, Kojima N. J. Antibiot. 2001; 54: 1025
    • 6c Ishii T, Nonaka K, Sugawara A, Iwatsuki M, Masuma R, Hirose T, Sunazuka T, Omura S, Shiomi K. J Antibiot. 2015; 68: 633
    • 6d Okada M, Park S, Koshizawa T, Ueda M. Tetrahedron 2009; 65: 2136
    • 7a Rizzacasa MA, Sturgess D. Org. Biomol. Chem. 2014; 12: 1367
    • 7b Calo F, Bondke A, Richardson J, White AJ. P, Barrett AG. M. Tetrahedron Lett. 2009; 50: 3388
    • 7c Atkin L, Chen Z, Robertson A, Sturgess D, White JM, Rizzacasa MA. Org. Lett. 2018; 20: 4255
    • 7d Calo F, Richardson J, Barrett AG. M. J. Org. Chem. 2008; 73: 9692
    • 8a Das S, Dalal A, Gholap SL. Synth. Commun. 2020; 50: 580
    • 8b Sharma K, Surineni N, Gholap SL. Tetrahedron Lett. 2020; 61: 152608
    • 8c Das S, Dalal A, Gholap SL. Org. Biomol. Chem. 2021; 19: 1100
    • 8d Sharma K, Surineni N, Das S, Gholap SL. Org. Biomol. Chem. 2021; 19: 3698
    • 8e Sharma K, Surineni N, Dalal A, Gholap SL. Eur. J. Org. Chem. 2021; 4398
    • 9a Ram RN, Charles I. Tetrahedron 1997; 53: 7335
    • 9b Mori K, Iwasawa H. Tetrahedron 1980; 36: 87
    • 9c Corey EJ, Lansbury PT. Jr. J. Am. Chem. Soc. 1983; 105: 4093
    • 9d Pirrung MC, Han H, Nunn DS. J. Org. Chem. 1994; 59: 2423
    • 9e Saito S, Komada K, Moriwake T. Org. Synth. 1996; 73: 184
    • 10a Katz JE, Dumlao DS, Wasserman JI, Lansdown MG, Jung ME, Faull KF, Clarke S. Biochemistry 2004; 43: 5976
    • 10b Pirrung MC, Han H, Nunn DS. J. Org. Chem. 1994; 59: 2423
  • 11 The formation of other diastereomers was not observed within detectable limits in 1H NMR spectra.
  • 12 Dess DB, Martin JC. J. Org. Chem. 1983; 48: 4155
  • 13 The keto-enol tautomeric equilibrium was confirmed by using 1H NMR spectroscopy.
  • 14 Omura K, Swern D. Tetrahedron 1978; 34: 1651
  • 15 The Cram or Felkin–Anh product 10a is the major product.