Synthesis
DOI: 10.1055/s-0040-1720129
review
Recent Advancements in the Chemistry of Diazo Compounds

Recent Advances in Diazophosphonate Chemistry: Reactions and Transformations

Saif Ullah
a   Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. of China
,
Zulfiqar Hussain
b   School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. of China
,
Yungui Peng
a   Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. of China
› Author Affiliations
This work was sponsored by the National Natural Science Foundation of China (21472151), Natural Science Foundation of Chongqing Municipality (cstc2019jcyj-msxmX0414), and Fundamental Research Funds for the Central Universities (XDJK2019AA003).


Abstract

Diazophosphonates function as indispensable synthetic intermediates within the domain of organic chemistry, serving as precursors for a diverse range of molecules, with potential applications as bioactive compounds. α-Diazomethylphosphonates showcase expansive reactivity and elevated levels of enantioselectivity in asymmetric transformations, especially in conjunction with suitable catalyst systems. This review compiles the latest advancements in diazophosphonate chemistry from 2016 to 2024, highlighting their reactivity and transformative potential in organic synthesis. Diazophosphonates, regarded as revolutionary compounds, exhibit unique attributes as carbene precursors, driving diverse chemical reactions such as [3+2] cycloaddition, asymmetric [3+2] cycloaddition, asymmetric [3+3] cycloaddition, and asymmetric substitution reactions. Their adaptability in functional group conversions underscores their pivotal role in various synthetic methodologies. The review highlights the growing interest in diazophosphonate reactions among synthetic chemists, fostering novel synthetic strategies and expanding their application horizons. The multifaceted utility of diazophosphonates as reagents, synthetic intermediates, precursors, and catalysts underscores their significance in modern organic chemistry and pharmaceutical applications, prompting further exploration into this dynamic field.

1 Introduction

2 [3+2] Cycloaddition Reactions

3 Asymmetric [3+2] Cycloaddition Reactions

4 Asymmetric [3+3] Cycloaddition Reactions

5 Asymmetric Substitution Reactions

6 Diazophosphonates as Carbene Precursors

7 Diazophosphonates in the Chemistry of Fluorinated Compounds

8 Other Reactions

9 Future Directions

10 Conclusion



Publication History

Received: 06 June 2024

Accepted after revision: 30 July 2024

Article published online:
05 September 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wang J. Tetrahedron Lett. 2022; 108: 154135
  • 2 Simões MM, Cavaleiro JA, Ferreira VF. Molecules 2023; 28: 6683
  • 3 Liu L, Zhang J. Chem. Soc. Rev. 2016; 45: 506
  • 4 Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
  • 5 Roose T, Verdoorn D, Mampuys P, Ruijter E, Maes B, Orru R. Chem. Soc. Rev. 2022; 51: 5842
  • 6 Li YP, Li ZQ, Zhu SF. Tetrahedron Lett. 2018; 59: 2307
  • 7 Epping RF, Vesseur D, Zhou M, de Bruin B. ACS Catal. 2023; 13: 5428
  • 8 Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
  • 9 Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
  • 10 Wilson J, Cui J, Nakao T, Kwok H, Zhang Y, Kayrouz CM, Pham TM, Roodhouse H, Ju KS. Appl. Environ. Microbiol. 2023; 89: e00338-23
  • 11 Manghi MC, Masiol M, Calzavara R, Graziano PL, Peruzzi E, Pavoni B. Chemosphere 2021; 283: 131187
  • 12 Zhang S, Zhang MH, Feng S, Zhang WJ, Zhu YY, Li ZW, Bai S. Chem. Pap. 2024; 1
  • 13 Abbod M, Safaie N, Gholivand K, Mehrabadi M, Bonsaii M, Valmoozi AA. E. Chem. Biol. Technol. Agric. 2021; 8: 1
  • 14 Marinozzi M, Pertusati F, Serpi M. Chem. Rev. 2016; 116: 13991
  • 15 Davies HM, Lee GH. Org. Lett. 2004; 6: 2117
  • 16 Beletskaya IP, Titanyuk ID. J. Org. Chem. 2022; 87: 2748
  • 17 Burtoloso AC, Momo PB, Novais GL. An. Acad. Bras. Cienc. 2018; 90: 859
  • 18 Myers EL, Raines RT. Angew. Chem. Int. Ed. 2009; 48: 2359
  • 19 Faialaga NH, Danheiser RL. Org. Synth. 2022; 99: 234
  • 20 Seyferth D, Marmor RS, Hilbert P. J. Org. Chem. 1971; 36: 1379
  • 21 Zhai SJ, Peng X, Zhang FG, Ma JA. Org. Lett. 2019; 21: 9884
  • 22 Devi L, Sharma G, Kant R, Shukla SK, Rastogi N. Org. Biomol. Chem. 2021; 19: 4132
  • 23 Ruffell K, Smith FR, Green MT, Nicolle SM, Inman M, Lewis W, Hayes CJ, Moody CJ. Chem. Eur. J. 2021; 27: 13703
    • 24a She R, Qiu J, Liu Y, Peng YG. Adv. Synth. Catal. 2023; 365: 1580
    • 24b Lin MY, Maddirala SJ, Liu RS. Org. Lett. 2005; 7: 1745
    • 24c Bao M, Chen JZ, Pei C, Zhang SJ, Lei JP, Hu WH, Xu XF. Sci. China Chem. 2021; 64: 778
    • 24d Siddiqi Z, Wertjes WC, Sarlah D. J. Am. Chem. Soc. 2020; 142: 10125
  • 25 Du T, Du F, Ning Y, Peng Y. Org. Lett. 2015; 17: 1308
  • 26 Zheng B, Chen H, Zhu L, Hou X, Wang Y, Lan Y, Peng YG. Org. Lett. 2019; 21: 593
  • 27 Gelis C, Bekkaye M, Lebee C, Blanchard F, Masson G. Org. Lett. 2016; 18: 3422
  • 28 Chi TC, Yang PC, Hung SK, Wu HW, Wang HC, Liu HK, Liu LW, Chou HH. J. Org. Chem. 2024; 89: 5401
  • 29 Du F, Zhou J, Peng YG. Org. Lett. 2017; 19: 1310
  • 30 Zhang H, Wen XJ, Gan LH, Peng YG. Org. Lett. 2012; 14: 2126
  • 31 Wu W, Wang Y, Guo J, Cai L, Chen Y, Huang YM, Peng YG. Chem. Commun. 2020; 56: 11235
  • 32 Zhu P, Yang Y, Liu Y, Peng YG. Org. Lett. 2022; 24: 1657
  • 33 Yan L, Han Z, Zhu B, Yang C, Tan CH, Jiang Z. Beilstein J. Org. Chem. 2013; 9: 1853
  • 34 Lin A, Wang J, Mao H, Shi Y, Mao Z, Zhu C. Eur. J. Org. Chem. 2013; 6241
  • 35 Wang Q, Pajkert R, Mei H, Röschenthaler GV, Han J. J. Fluorine Chem. 2024; 273: 110226
  • 36 Shi F, Mancuso R, Larock RC. Tetrahedron Lett. 2009; 50: 4067
  • 37 Cai Y, Li Y, Zhang M, Fu J, Miao Z. RSC Adv. 2016; 6: 69352
  • 38 Li P, Wu C, Zhao J, Rogness DC, Shi F. J. Org. Chem. 2012; 77: 3149
  • 39 Zhang SG, Liang CG, Zhang WH. Molecules 2018; 23: 2783
  • 40 Bitai J, Covini D, Karolyi-Oezguer J, Dank C, Berger H, Gollner A. Org. Lett. 2024; 26: 1229
  • 41 Mal S, Malik U, Mahapatra M, Mishra A, Pal D, Paidesetty SK. Drug Dev. Res. 2022; 83: 1469
  • 42 Cheng B, Bao B, Zu B, Duan X, Duan S, Li Y, Zhai H. RSC Adv. 2017; 7: 54087
  • 43 Li P, Zhao J, Wu C, Larock RC, Shi F. Org. Lett. 2011; 13: 3340
  • 44 Chen GH, Hu ML, Peng YG. J. Org. Chem. 2018; 83: 1591
  • 45 Kumari A, Singh RK. Bioorg. Chem. 2019; 89: 103021
  • 46 Gaikwad DD, Chapolikar AD, Devkate CG, Warad KD, Tayade AP, Pawar RP, Domb AJ. Eur. J. Org. Chem. 2015; 90: 707
  • 47 Ameziane El Hassani I, Rouzi K, Assila H, Karrouchi K, Ansar MH. Reactions 2023; 4: 478
  • 48 Neto JS, Zeni G. Chem. Eur. J. 2020; 26: 8175
  • 49 Breugst M, Reissig HU. Angew. Chem. Int. Ed. 2020; 59: 12293
  • 50 Jamali MF, Vaishanv NK, Mohanan K. Chem. Rec. 2020; 20: 1394
  • 51 McGrath NA, Raines RT. Chem. Sci. 2012; 3: 3237
  • 52 Zhang X, Zhang Y. Molecules 2013; 18: 7145
  • 53 Huang N, Tong XF, Zhou S, Guo QX, Peng YG. Adv. Synth. Catal. 2019; 361: 4805
  • 54 Baiju T, Namboothiri IN. Chem. Rec. 2017; 17: 939
  • 55 Kowalczyk A, Utecht-Jarzyńska G, Mlostoń G, Jasiński M. Org. Lett. 2022; 24: 2499
  • 56 Mykhailiuk PK, Koenigs RM. Chem. Eur. J. 2019; 25: 6053
  • 57 Hajdin I, Pajkert R, Mei H, Han J, Röschenthaler GV. J. Fluorine Chem. 2024; 273: 110218
  • 58 Mei H, Wang L, Pajkert R, Wang Q, Xu J, Liu J, Röschenthaler GV, Han J. Org. Lett. 2021; 23: 1130
  • 59 Li J, Yu XL, Cossy J, Lv SY, Zhang HL, Su F, Mykhailiuk PK, Wu Y. Eur. J. Org. Chem. 2017; 266
  • 60 Guo F, Li Q, Zhou C. Org. Biomol. Chem. 2017; 15: 9552
  • 61 Luo M, Groaz E, De Jonghe S, Schols D, Herdewijn P. Chem. Biodivers. 2019; 16: e1800532
  • 62 Ahsan MJ, Ali A, Ali A, Thiriveedhi A, Bakht MA, Yusuf M. Salahuddin, Afzal O., Altamimi A. S. A. ACS omega 2022; 7: 38207
  • 63 Mathew B, Suresh J, Anbazhagan S, Elizabeth Mathew G. Cent. Nerv. Syst. Agents Med. Chem. 2013; 13: 195
  • 64 Mertens L, Koenigs RM. Org. Biomol. Chem. 2016; 14: 10547
  • 65 Yokomatsu T, Suemune K, Murano T, Shibuya S. Heterocycles 2002; 56: 273
  • 66 Mykhailiuk PK. Angew. Chem. Int. Ed. 2015; 54: 6558
  • 67 Wang Q, Wang L, Pajkert R, Hajdin I, Mei H, Röschenthaler GV, Han J. J. Fluorine Chem. 2021; 251: 109899
  • 68 Kumar H, Saini D, Jain S, Jain N. Eur. J. Med. Chem. 2013; 70: 248
  • 69 Alam MJ, Alam O, Naim MJ, Nawaz F, Manaithiya A, Imran M, Thabet HK, Alshehri S, Ghoneim MM, Alam P. Molecules 2022; 27: 8708
  • 70 Singh G, Chandra P, Sachan N. Int. J. Pharm. Sci. Rev. Res. 2020; 65: 201
  • 71 Trofimenko S, Calabrese JC, Thompson JS. Inorg. Chem. 1987; 26: 1507
  • 72 Slobodyanyuk EY, Tarasiuk I, Pasichnyk T, Volochnyuk DM, Sibgatulin DO, Grygorenko OO. Chem. Eur. J. 2024; 30: e202303972
  • 73 Zhou J, Huang WJ, Jiang GF. Org. Lett. 2018; 20: 1158
  • 74 Huang N, Zou LL, Peng YG. Org. Lett. 2017; 19: 5806
  • 75 Chen J, Wen XJ, Wang Y, Du F, Cai L, Peng YG. Org. Lett. 2016; 18: 4336
  • 76 Borah B, Veeranagaiah NS, Sharma S, Patat M, Prasad MS, Pallepogu R, Chowhan LR. RSC Adv. 2023; 13: 7063
  • 77 Hua TB, Yang QQ, Zou YQ. Molecules 2019; 24: 3191
  • 78 Lee SI, Kim KE, Hwang GS. Org. Biomol. Chem. 2015; 13: 2745
  • 79 Sibi MP, Stanley LM, Soeta T. Org. Lett. 2007; 9: 1553
  • 80 Muruganantham R, Mobin SM, Namboothiri IN. Org. Lett. 2007; 9: 1125
  • 81 Mohapatra S, Bhanja C, Jena S, Chakroborty S, Nayak S. Synth. Commun. 2013; 43: 1993
  • 82 Abo-Salem HM, Nassrallah A, Soliman AA, Ebied MS, Elawady ME, Abdelhamid SA, El-Sawy ER, Al-Sheikh YA, Aboul-Soud MA. Molecules 2020; 25: 1124
  • 83 Mayorquín-Torres MC, Simoens A, Bonneure E, Stevens CV. Chem. Rev. 2024; 12: 7907
  • 84 Shelke AM, Suryavanshi G. Org. Biomol. Chem. 2015; 13: 8669
  • 85 Gao X, Li C, Chen L, Li X. Org. Lett. 2023; 25: 7628
  • 86 Liu J, Wei X, Wang Y, Qu J, Wang B. Org. Biomol. Chem. 2024; 22: 4254
  • 87 Wu JH, Tan JP, Zheng JY, He J, Song Z, Su Z, Wang T. Angew. Chem. Int. Ed. 2023; 62: e202215720
  • 88 Liu Y, Peng X, She R, Zhou X, Peng YG. Org. Lett. 2021; 23: 7295
  • 89 Tandon V, Urvash iYadav P, Sur S, Abbat S, Tiwari V, Hewer R, Papathanasopoulos MA, Raja R, Banerjea AC. ACS Med. Chem. Lett. 2015; 6: 1065
  • 90 Shao Q, Chen J, Tu M, Piotrowski DW, Huang Y. Chem. Commun. 2013; 49: 11098
  • 91 Wu W, Yan X, Li XF, Ning YQ, Hu L, Zhu L, Ouyang Q, Peng YG. Org. Lett. 2022; 24: 3766
  • 92 Gutiérrez-Bonet Á, Tellis JC, Matsui JK, Vara BA, Molander GA. ACS Catal. 2016; 6: 8004
  • 93 Du F, Yin LY, Ning YQ, Peng YG. Adv. Synth. Catal. 2016; 358: 2280
  • 94 Ge L, Zurro M, Harutyunyan SR. Chem. Eur. J. 2020; 26: 16277
  • 95 Zhang R, Ma R, Chen R, Wang L, Ma Y. J. Org. Chem. 2024; 89: 1846
  • 96 Kaur BP, Kaur J, Chimni SS. RSC Adv. 2021; 11: 2126
  • 97 Palmieri A, Petrini M. Chem. Rec. 2016; 16: 1353
  • 98 Liao K, Yang YF, Li Y, Sanders JN, Houk K, Musaev DG, Davies HM. Nat. Chem. 2018; 10: 1048
  • 99 Nguyen TT. H, Bosse AT, Ly D, Suarez CA, Fu J, Shimabukuro K, Musaev DG, Davies HM. J. Am. Chem. Soc. 2024; 146: 8447
  • 100 Naeem Y, Matsuo BT, Davies HM. ACS Catal. 2023; 14: 124
  • 101 Cao ZY, Wang YH, Zeng XP, Zhou J. Tetrahedron Lett. 2014; 55: 2571
  • 102 Atmaca U, Daryadel S, Taslimi P, Çelik M, Gülçin İ. Arch. Pharm. 2019; 352: 1900200
  • 103 Shevchuk M, Wang Q, Pajkert R, Xu J, Mei H, Röschenthaler GV, Han J. Adv. Synth. Catal. 2021; 363: 2912
  • 104 Burianova V, Dar’in D, Krasavin M. Tetrahedron Lett. 2020; 61: 152255
  • 105 Wang Q, Liu J, Mei H, Pajkert R, Röschenthaler GV, Han J. Adv. Synth. Catal. 2023; 365: 2883
  • 106 Mykhailiuk PK. Chem. Rev. 2020; 120: 12718
  • 107 Mei H, Liu J, Pajkert R, Wang L, Röschenthaler GV, Han J. Org. Chem. Front. 2021; 8: 767
  • 108 Docherty JH, Lister TM, Mcarthur G, Findlay MT, Domingo-Legarda P, Kenyon J, Choudhary S, Larrosa I. Chem. Rev. 2023; 123: 7692
  • 109 Wang F, Jin L, Kong L, Li X. Org. Lett. 2017; 19: 1812
  • 110 Song C, Yang C, Zeng H, Zhang W, Guo S, Zhu J. Org. Lett. 2018; 20: 3819
  • 111 Orsini F, Sello G, Sisti M. Curr. Med. Chem. 2010; 17: 264
  • 112 Keglevich G, Bálint E. Molecules 2012; 17: 12821
  • 113 Varga PR, Keglevich G. Molecules 2021; 26: 2511
  • 114 Ramakrishna K, Thomas JM, Sivasankar C. J. Org. Chem. 2016; 81: 9826
  • 115 Blomquist A, Longone DT. J. Am. Chem. Soc. 1959; 81: 2012
  • 116 Wei B, Sharland JC, Lin P, Wilkerson-Hill SM, Fullilove FA, McKinnon S, Blackmond DG, Davies HM. ACS Catal. 2019; 10: 1161
  • 117 Dong K, Liu M, Xu X. Molecules 2022; 27: 3088
  • 118 Ge H, Liu S, Cai Y, Gao Z, Du S, Miao Z, Xie G. SynOpen 2017; 1: 0068
  • 119 Elliott TS, Slowey A, Ye Y, Conway SJ. MedChemComm 2012; 3: 735
  • 120 Ren X, Chandgude AL, Carminati DM, Shen Z, Khare SD, Fasan R. Chem. Sci. 2022; 13: 8550
  • 121 Carminati DM, Fasan R. ACS Catal. 2019; 9: 9683
  • 122 Zhu CL, Lu CD. Org. Lett. 2024; 26: 2606
  • 123 Mukherjee S, Gupta RD. J. Toxicol. 2020; 3007984
  • 124 Ma X, Xu Q, Li H, Su C, Yu L, Zhang X, Cao H, Han LB. Green Chem. 2018; 20: 3408
  • 125 Pascual S, de Mendoza P, Echavarren AM. Org. Biomol. Chem. 2007; 5: 2727
  • 126 Brunen S, Mitschke B, Leutzsch M, List B. J. Am. Chem. Soc. 2023; 145: 15708
  • 127 Zhou Y, Zhang Y, Wang J. Chin. J. Chem. 2017; 35: 621
  • 128 Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Chem. Soc. Rev. 2020; 49: 6833
  • 129 Thumar N, Wei Q, Hu W. Adv. Organomet. Chem. 2016; 66: 33
  • 130 Timmann S, Alcarazo M. Chem. Commun. 2023; 59: 8032
  • 131 Zhao R, Shi L. Angew. Chem. Int. Ed. 2020; 59: 12282
  • 132 Devi L, Pokhriyal A, Shekhar S, Kant R, Mukherjee S, Rastogi N. Asian J. Org. Chem. 2021; 10: 3328
  • 133 Wu S, Song HX, Zhang CP. Chem. Asian J. 2020; 15: 1660
  • 134 Romanenko VD, Kukhar VP. Chem. Rev. 2006; 106: 3868
  • 135 Mix KA, Aronoff MR, Raines RT. Chem. Asian J. 2016; 11: 3233
  • 136 Sharma B, Kumar V. J. Med. Chem. 2021; 64: 16865
  • 137 Peter S, Aderibigbe BA. Molecules 2019; 24: 3604
  • 138 Kozáček P, Dostál L, Hochmal A, Pascucci M, Ruzička A, Mikysek TS, Erben M. Organometallics 2023; 42: 2405
  • 139 Wu C, Ye F, Wu G, Xu S, Deng G, Zhang Y, Wang JB. Synthesis 2016; 48: 751
  • 140 Guo L, Zhao W, Li M, Dong S, Gong J, Chen S. Appl. Organomet. Chem. 2019; 33: e5003
  • 141 Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
  • 142 Golitsin SM, Beletskaya IP, Titanyuk ID. Synthesis 2020; 52: 775
  • 143 Zhou Y, Ye F, Zhou Q, Zhang Y, Wang J. Org. Lett. 2016; 18: 2024
  • 144 Ebenezer O, Shapi M, Tuszynski JA. Biomedicines 2022; 10: 1124
  • 145 Mykhailiuk PK. Chem. Rev. 2020; 121: 1670
  • 146 Zhang W, Xiang XX, Chen J, Yang C, Pan YL, Cheng JP, Meng Q, Li X. Nat. Commun. 2020; 11: 638
  • 147 Panigrahi K, Eggen M, Maeng JH, Shen Q, Berkowitz DB. Chem. Biol. 2009; 16: 928
  • 148 Díaz-Rojas M, González-Andrade M, Aguayo-Ortiz R, Rodríguez-Sotres R, Pérez-Vásquez A, Madariaga-Mazón A, Mata R. Front. Pharmacol. 2023; 14: 1281045
  • 149 Li X, Shi X, Li X, Shi D. Beilstein J. Org. Chem. 2019; 15: 2213
  • 150 Zhou Y, Zhang Y, Wang J. Org. Biomol. Chem. 2016; 14: 10444
  • 151 Budeev A, Kantin G, Dar’in D, Krasavin M. Molecules 2021; 26: 2530
  • 152 Liu J, Pajkert R, Wang L, Mei H, Röschenthaler GV, Han J. Chin. Chem. Lett. 2022; 33: 2429
  • 153 Wang PZ, Chen JR, Xiao WJ. Org. Biomol. Chem. 2019; 17: 6936
  • 154 Bakulina O, Inyutina A, Dar’in D, Krasavin M. Molecules 2021; 26: 6563
  • 155 Wang Q, Liu J, Mei H, Pajkert R, Kessler M, Röschenthaler GV, Han J. Org. Lett. 2022; 24: 8036
  • 156 Wang Q, Liu J, Wang N, Pajkert R, Mei H, Röschenthaler GV, Han J. Adv. Synth. Catal. 2022; 364: 1969
  • 157 Pons A, Delion L, Poisson T, Charette AB, Jubault P. Acc. Chem. Res. 2021; 54: 2969
  • 158 Adekenova KS, Wyatt PB, Adekenov SM. Beilstein J. Org. Chem. 2021; 17: 245
  • 159 Cui XQ, Zheng MM, Tang X, Zhang ZQ, Xue XS, Marek I, Ma JA, Zhang FG. Chem. Catal. 2023; 3: 100637
  • 160 Jankins TC, Fayzullin RR, Khaskin E. Organometallics 2018; 37: 2609
  • 161 Hajdin I, Pajkert R, Keßler M, Han J, Mei H, Röschenthaler GV. Beilstein J. Org. Chem. 2023; 19: 541
  • 162 Röschenthaler G.-V, Kukhar VP, Belik MY, Mazurenko KI, Sorochinsky AE. Tetrahedron 2006; 62: 9902
  • 163 Xu Y, Aoki J, Shimizu K, Umezu-Goto M, Hama K, Takanezawa Y, Yu S, Mills GB, Arai H, Qian L. J. Med. Chem. 2005; 48: 3319
  • 164 Wu J, Cao S, Liu N, Shen L, Yu J, Zhang J, Li H, Qian X. Org. Biomol. Chem. 2010; 8: 2386
    • 165a Tan XF, Zhang FG, Ma JA. Beilstein J. Org. Chem. 2020; 16: 638
    • 165b Jiang L, Jingcheng X, Romana P, Haibo M, Gerd-Volker R, Jianlin H. Acta Chim. Sin. 2021; 79: 747
  • 166 Pramanik MM, Rastogi N. Org. Biomol. Chem. 2016; 14: 1239
  • 167 Laconde G, Amblard M, Martinez J. Tetrahedron Lett. 2019; 60: 341
  • 168 Katritzky AR, Suzuki K, Wang Z. Synlett 2005; 1656
  • 169 Kosobokov MD, Titanyuk ID, Beletskaya IP. Tetrahedron Lett. 2014; 55: 6791
  • 170 Wang JY, Hao WJ, Tu SJ, Jiang B. Org. Chem. Front. 2020; 7: 1743
  • 171 Wang Z, Wong YF, Sun J. Angew. Chem. Int. Ed. 2015; 127: 13915
  • 172 Liu S, Liang Y, Xu L, Dong J. Eur. J. Org. Chem. 2024; 27: e202301282
  • 173 Chen Y, Yu R, Wang M, Huang Y, Peng Y. Adv. Synth. Catal. 2021; 363: 4856
  • 174 Nun P, Egbert JD, Oliva-Madrid MJ, Nolan SP. Chem. Eur. J. 2012; 4: 1064
  • 175 Soengas RG, Rodríguez-Solla H. Molecules 2021; 26: 249
  • 176 Zhou Y, Ye F, Wang X, Xu S, Zhang Y, Wang J. J. Org. Chem. 2015; 80: 6109
  • 177 He J, Feng Y, Yang F, Dai B, Liu P. Eur. J. Org. Chem. 2020; 5857
  • 178 Guo J, Xu A, Cheng M, Wan Y, Wang R, Fang Y, Jin Y, Xie SS, Liu J. Drug Des. Dev. Ther. 2023; 1495
  • 179 Shuvalov VY, Chernenko S. А, Shatsauskas AL, Samsonenko AL, Dmitriev MV, Fisyuk AS. Chem. Heterocycl. Compd. 2021; 57: 764
  • 180 Tangella Y, Manasa KL, Krishna NH, Sridhar B, Kamal A, Nagendra Babu B. Org. Lett. 2018; 20: 3639
  • 181 Li W, Liu X, Hao X, Cai YF, Lin LL, Feng XM. Angew. Chem. Int. Ed. 2012; 51: 8644
  • 182 Wen XJ, Chen J, Peng YG. Adv. Synth. Catal. 2014; 356: 3794
  • 183 Li XF, He PP, Zhu P, Tang YH, Peng YG. Org. Chem. Front. 2023; 10: 1564
  • 184 He ZT, Hartwig JF. Nat. Chem. 2019; 11: 177
  • 185 Tan F, Liu XH, Wang Y, Dong SX, Yu H, Feng XM. Angew. Chem. Int. Ed. 2018; 57: 16176
  • 186 Hashimoto T, Naganawa Y, Maruoka K. J. Am. Chem. Soc. 2011; 133: 8834
  • 187 Gettler J, Čarný T, Markovič M, Koóš P, Samoľová E, Moncoľ J, Gracza T. Int. J. Mol. Sci. 2023; 24: 10331
  • 188 Qi J, Oliver SF, Xiao W, Song L, Brands KM. Org. Process Res. Dev. 2017; 21: 1547
  • 189 Rastogi GK, Ginotra SK, Agarwal A, Tandon V. Org. Biomol. Chem. 2015; 13: 1000
  • 190 Abdel-Aziz M, Abuo-Rahma GE. D. A, Hassan AA. Eur. J. Med. Chem. 2009; 44: 3480
  • 191 Kim AN, Ngamnithiporn A, Du E, Stoltz BM. Chem. Rev. 2023; 123: 9447
  • 192 Fraile A, Schietroma DM. S, Albrecht A, Davis RL, Jørgensen KA. Chem. Eur. J. 2012; 10: 2773
  • 193 Gao Z, Guo Y. Chem. Commun. 2022; 58: 9393
  • 194 Choudhury AR, Mukherjee S. Chem. Sci. 2016; 7: 6940
  • 195 Zhang Z, Gevorgyan V. Chem. Rev. 2024; 124: 7214
  • 196 Woodhouse MD, McCusker JK. J. Am. Chem. Soc. 2020; 142: 16229
  • 197 Prier CK, Rankic DA, MacMillan DW. Chem. Rev. 2013; 113: 5322
  • 198 Shaw MH, Twilton J, MacMillan DW. J. Org. Chem. 2016; 81: 6898
  • 199 Chen C, Wang X, Yang T. Front. Chem. 2020; 8: 551159
  • 200 Nagode SB, Kant R, Rastogi N. Org. Lett. 2019; 21: 6249
  • 201 Saeed A. Eur. J. Med. Chem. 2016; 116: 290
  • 202 Hong JE, Shin WS, Jang WB, Oh DY. J. Org. Chem. 1996; 61: 2199
  • 203 Bera S, Mondal P, Sarkar D, Pathi VB, Pakrashy S, Datta A, Banerji B. J. Org. Chem. 2021; 86: 7069
  • 204 Phatake RS, Mullapudi V, Wakchaure VC, Ramana CV. Org. Lett. 2017; 19: 372
  • 205 Dhameja M, Pandey J. Asian J. Org. Chem. 2018; 7: 1502
  • 206 Levashova EY, Zhukovsky DD, Dar’in DV, Krasavin MY. Chem. Heterocycl. Compd. 2020; 56: 806
  • 207 Kumaran S, Prabhakaran M, Mariyammal N, Parthasarathy K. Org. Biomol. Chem. 2020; 18: 7837
  • 208 Eitzinger A, Mayer RJ, Hampel N, Mayer P, Waser M, Ofial AR. Org. Lett. 2020; 22: 2182
  • 209 Pati S, Namboothiri IN. Tetrahedron 2019; 75: 2246
  • 210 Wu C, Mao S, Deng G, Qiu Y. Tetrahedron 2018; 74: 2819
  • 211 Rodríguez HA, Cruz DA, Padrón JI, Fernández I. J. Org. Chem. 2023; 88: 11102
  • 212 Cai L, Chen Y, Cao H, Wei Q, Yang Y, Ouyang Q, Peng YG. Org. Lett. 2019; 21: 7597
  • 213 Brown DG, Velthuisen EJ, Commerford JR, Brisbois RG, Hoye TR. J. Org. Chem. 1996; 61: 2540
    • 214a Yuan H, Gong Y. J. Fluor. Chem. 2013; 149: 125
    • 214b Wei XM, Chen GH, Peng YG. Tetrahedron Lett. 2020; 61: 152174
  • 215 Wu W, Liao N, Wei Q, Huang JY, Huang Q, Peng YG. Org. Lett. 2021; 23: 6872
  • 216 Sapegin A, Krasavin M. J. Org. Chem. 2019; 84: 8788
  • 217 Roth GJ, Liepold B, Mueller SG, Bestmann HJ. Synthesis 2004; 59
  • 218 Venturoni F, Cerra B, Marinozzi M, Camaioni E, Gioiello A, Pellicciari R. Catalysts 2018; 8: 600
  • 219 Inyutina A, Chupakhin E, Dar’in D, Krasavin M. Synlett 2020; 31: 1487
  • 220 Zhao N, Bai Y, Liu Y, Xiao S, Wang J, Wang L. Asian J. Org. Chem. 2022; 11: e202200069
  • 221 Hashimoto T, Nakatsu H, Takiguchi Y, Maruoka K. J. Am. Chem. Soc. 2013; 135: 16010
  • 222 Pálvölgyi ÁM, Scharinger F, Schnürch M, Bica-Schröder K. Eur. J. Org. Chem. 2021; 5367
    • 223a Uraguchi D, Sorimachi K, Terada M. J. Am. Chem. Soc. 2005; 127: 9360
    • 223b Grayson MN. J. Org. Chem. 2021; 86: 13631