Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2022; 54(09): 2289-2297
DOI: 10.1055/s-0040-1719895
DOI: 10.1055/s-0040-1719895
paper
Synthesis of Aryloxiranes and Arylcyclopropanes via Deprotonation of Benzyl Chlorides
This work was supported by the National Science Centre, Poland (Narodowe Centrum Nauki; UMO-2014/15/B/ST5/02180).
Abstract
Upon the action of strong bases at low temperature, benzyl chloride and its ring-substituted derivatives undergo deprotonation at the benzylic position and the produced carbanions react with aldehydes, ketones and Michael acceptors to form aryl oxiranes and cyclopropanes.
Key words
epoxides - cyclopropanes - halocarbanions - nucleophilic addition - nucleophilic substitution - Michael acceptors - Darzens reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1719895.
- Supporting Information
Publication History
Received: 10 December 2021
Accepted after revision: 21 December 2021
Article published online:
21 February 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Yudin AK. Aziridines and Epoxides in Organic Synthesis. Wiley-VCH; Weinheim: 2006
- 2a Kulinkovich OG. Cyclopropanes in Organic Synthesis . J. Wiley & Sons; Hoboken: 2015
- 2b Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 2c Brackman F, de Meijere A. Chem. Rev. 2007; 107: 4493
- 3a McGarrigle EM, Gilheany DG. Chem. Rev. 2005; 105: 1563
- 3b Grigoropoulou G, Clark JH, Elings JA. Green Chem. 2003; 5: 1
- 3c Denmark SE, Forbes DC, Hays DS, DePue JS, Wilde RG. J. Org. Chem. 1995; 60: 1391
- 3d Adam W, Saha-Möller CR, Ganeshpure PA. Chem. Rev. 2001; 101: 3499
- 3e Adam W, Curci R, Edwards JO. Acc. Chem. Res. 1989; 22: 205
- 4 Berti G. In Topics in Stereochemistry, Vol. 7. Allinger NL, Eliel EL. J. Wiley & Sons; New York: 1973: 93-251
- 5a Ballester M. Chem. Rev. 1955; 55: 283
- 5b Bako P, Rapi Z, Keglevich G. Curr. Org. Synth. 2014; 11: 361
- 5c Guo J, Sun X, Yu S. Org. Biomol. Chem. 2014; 12: 265
- 6a Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
- 6b Li A.-H, Dai L.-X, Aggarwal VK. Chem. Rev. 1997; 97: 2341
- 6c Zhang Z.-W, Li H.-B, Li J, Wang C.-C, Feng J, Yang Y.-H, Liu S. J. Org. Chem. 2020; 85: 537
- 6d Lou M.-M, Wang H, Song L, Liu H.-Y, Li Z.-Q, Guo X.-S, Zhang F.-G, Wang B. J. Org. Chem. 2016; 81: 5915
- 7 Fedoryński M. Chem. Rev. 2003; 103: 1099
- 8a Wu W, Lin Z, Jiang H. Org. Biomol. Chem. 2018; 16: 7315
- 8b Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
- 8c Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
- 8d Tomilov YV, Menchikov LG, Novikov RA, Ivanova OA, Trushkov IV. Russ. Chem. Rev. 2018; 87: 201
- 9 Simmons HE, Smith RD. J. Am. Chem. Soc. 1959; 81: 4256
- 10a Fleming FF, Shook BC. Tetrahedron 2002; 58: 1
- 10b Barbasiewicz M, Marciniak K, Fedoryński M. Tetrahedron Lett. 2006; 47: 3871
- 11a Russo A, Meninno S, Tedesco C, Lattanzi A. Eur. J. Org. Chem. 2011; 5096
- 11b Xin X, Zhang Q, Liang Y, Zhang R, Dong D. Org. Biomol. Chem. 2014; 12: 2427
- 12a Roiser L, Robiette R, Waser M. Synlett 2016; 27: 1963
- 12b Kimachi T, Kinoshita H, Kusaka K, Takeuchi Y, Aoe M, Ju-ichi M. Synlett 2005; 842
- 12c Solladié-Cavallo A, Lupattelli P, Borini C. J. Org. Chem. 2005; 70: 1605
- 12d Stahl I, Schomburg S, Kalinowski HO. Chem. Ber. 1984; 117: 2247
- 13a Bona F, De Vitis L, Florio S, Ronzini L, Troisi L. Tetrahedron 2003; 59: 1381
- 13b Roche M, Lacroix C, Khoumeri O, Franco D, Neyts J, Terme T, Leyssen P, Vanelle P. Eur. J. Med. Chem. 2014; 76: 445
- 13c Meazza M, Ashe M, Shin HY, Yang HS, Mazzanti A, Yang JW, Rios R. J. Org. Chem. 2016; 81: 3488
- 13d Chen X, Yu Y, Liao Z, Li H, Wang W. Tetrahedron Lett. 2016; 57: 5742
- 13e Zhu Y, Zhao S, Zhang M, Song X, Chang J. Synthesis 2019; 51: 899
- 13f Zhao S, Zhu Y, Zhang M, Song X, Chang J. Synthesis 2019; 51: 2136
- 13g Zhang M, Li T, Cui C, Song X, Chang J. J. Org. Chem. 2020; 85: 2266
- 14a Sengmany S, Léonel E, Paugam JP, Nédélec J.-Y. Synthesis 2002; 533
- 14b Oudeyer S, Léonel E, Paugam JP, Nédélec J.-Y. Synthesis 2004; 389
- 14c Oudeyer S, Léonel E, Paugam JP, Nédélec J.-Y. Tetrahedron 2014; 70: 919
- 15 Kisiel K, Brześkiewicz J, Loska R, Mąkosza M. Adv. Synth. Catal. 2019; 361: 1641
- 16a Mąkosza M, Winiarski J. Acc. Chem. Res. 1987; 20: 282
- 16b Mąkosza M, Wojciechowski K. Chem. Rev. 2004; 104: 2631
- 17a Błażej S, Mąkosza M. Chem. Eur. J. 2008; 14: 11113
- 17b Seeliger F, Błażej S, Bernhardt S, Mąkosza M, Mayr H. Chem. Eur. J. 2008; 14: 6108
- 17c Appel R, Mayr H. J. Am. Chem. Soc. 2011; 133: 8240
- 17d Allgäuer DS, Jangra H, Asahara H, Li Z, Chen Q, Zipse H, Ofial AR, Mayr H. J. Am. Chem. Soc. 2017; 139: 13318
- 18 Andringa H, Heus-Kloos YA, Brandsma L. J. Organomet. Chem. 1987; 336: C41
- 19 Pericàs MA, Castellnou D, Rodríguez I, Riera A, Solà L. Adv. Synth. Catal. 2003; 345: 1305
- 20 Ou W.-H, Huang Z.-Z. Synthesis 2005; 2857
- 21 Aggarwal VK, Alonso E, Bae I, Hynd G, Lydon KM, Palmer MJ, Patel M, Porcelloni M, Richardson J, Stenson RA, Studley JR, Vasse J.-L, Winn CL. J. Am. Chem. Soc. 2003; 125: 10926
- 22 Tiddens MR, Klein Gebbink RJ. M, Matthias O. Org. Lett. 2016; 18: 3714
- 23 Giri R, Maugel N, Li J.-J, Wang D.-H, Breazzano SP, Saunders LB, Yu J.-Q. J. Am. Chem. Soc. 2007; 129: 3510
- 24 Allgäuer DS, Jangra H, Asahara H, Li Z, Chen Q, Zipse H, Ofial AR, Mayr H. J. Am. Chem. Soc. 2017; 139; 13318