Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2020; 31(07): 699-702
DOI: 10.1055/s-0040-1707993
DOI: 10.1055/s-0040-1707993
letter
N-Heterocyclic Carbene Catalyzed Deuteration of Aldehydes in D2O
Further Information
Publication History
Received: 02 December 2019
Accepted after revision: 08 January 2020
Publication Date:
03 March 2020 (online)
Abstract
An N-heterocyclic carbene (NHC)-catalyzed direct deuteration of aldehydes in a mixed solvent of deuterium oxide (D2O) and cyclopentyl methyl ether was established. The present deuteration is possibly initiated by the formation of a Breslow intermediate from the aldehyde and the NHC, with subsequent trapping by D2O providing the monodeuterated aldehyde.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1707993.
- Supporting Information
-
References and Notes
- 1a Pirali T, Serafini M, Cargnin S, Genazzani AA. J. Med. Chem. 2019; 62: 5276
- 1b Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 1758
- 1c Atzrodt J, Derdau V, Fey T, Zimmermann J. Angew. Chem. Int. Ed. 2007; 46: 7744
- 1d Herbert JM. J. Labelled Compd. Radiopharm. 2010; 53: 658
- 2a Atzrodt J, Derdau V, Kerr WJ, Reid M. Angew. Chem. Int. Ed. 2018; 57: 3022
- 2b Sawama Y, Monguchi Y, Sajiki H. Synlett 2012; 23: 959 ; and references cited therein
- 2c Sawama Y, Park K, Yamada T, Sajiki H. Chem. Pharm. Bull. 2018; 66: 21 ; and references cited therein
- 3a Adcock HV, Chatzopoulou E, Davies PW. Angew. Chem. Int. Ed. 2015; 54: 15525
- 3b Olsen EP. K, Singh T, Harris P, Andersson PG, Madsen R. J. Am. Chem. Soc. 2015; 137: 834
- 3c Ge J.-J, Yao C.-Z, Wang M.-M, Zheng H.-X, Kang Y.-B, Li Y. Org. Lett. 2016; 18: 228
- 4a Curley RW. Jr, Panigot MJ, Hansen AP, Fesik SW. J. Biomol. NMR 1994; 4: 335
- 4b Ramalingam K, Nanjappan P, Kalvin DM, Woodard RW. Tetrahedron 1988; 44: 5597
- 5a Ibrahim MY. S, Denmark SE. Angew. Chem. Int. Ed. 2018; 57: 10362
- 5b Li X, Wu S, Chen S, Lai Z, Luo H.-B, Sheng C. Org. Lett. 2018; 20: 1712
- 6 Zhang M, Yuan X.-A, Zhu C, Xie J. Angew. Chem. Int. Ed. 2019; 58: 312
- 7 Kerr WJ, Reid M, Tuttle T. Angew. Chem. Int. Ed. 2017; 56: 7808
- 8 Isbrandt ES, Vandavasi JK, Zhang W, Jamshidi MP, Newman SG. Synlett 2017; 28: 2851
- 9a Park K, Matsuda T, Yamada T, Monguchi Y, Sawama Y, Doi N, Sasai Y, Kondo S, Sawama Y, Sajiki H. Adv. Synth. Catal. 2018; 360: 2303
- 9b Sawama Y, Nakano A, Matsuda T, Kawajiri T, Yamada T, Sajiki H. Org. Process Res. Dev. 2019; 23: 648
- 10a Yabe Y, Sawama Y, Monguchi Y, Sajiki H. Chem. Eur. J. 2013; 19: 484
- 10b Yamada T, Park K, Monguchi Y, Sawama Y, Sajiki H. RSC Adv. 2015; 5: 92954
- 10c Yamada T, Kuwata M, Takakura R, Monguchi Y, Sajiki H, Sawama Y. Adv. Synth. Catal. 2018; 360: 637
- 11a Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
- 11b Menon RS, Biju AT, Nair V. Beilstein J. Org. Chem. 2016; 12: 444
- 12 Geng H, Chen X, Gui J, Zhang Y, Shen Z, Qian P, Chen J, Zhang S, Wang W. Nat. Catal. 2019; 2: 1071
- 13a Watanabe K, Yamagiwa N, Torisawa Y. Org. Process Res. Dev. 2007; 11: 251
- 13b Antonucci V, Coleman J, Ferry JB, Johnson N, Mathe M, Scott JP, Xu J. Org. Process Res. Dev. 2011; 15: 939
- 13c Watanabe K. Molecules 2013; 18: 3183
- 14 Monodeuterated Aldehydes 1a-d 1 to 1n-d 1; General Procedure An 18 mL test tube was charged with the appropriate aldehyde (0.2 mmol), IMes·HCl (6.8 mg, 0.02 mmol), Na2CO3 (4.2 mg, 0.04 mmol), CPME (0.2 mL), and D2O (1.0 mL). The tube was then sealed with a septum and the gas inside the tube was immediately replaced with Ar. The mixture was then heated at 120 °C for the appropriate time (Table 3), then extracted with EtOAc. The organic layers were dried (MgSO4) and concentrated in vacuo. If necessary, the residue was purified by column chromatography (silica gel). 4-Methoxybenzaldehyde-d 1 (1a-d 1 ): Yield: 15.8 mg (58%; 99% D incorporation). 1H NMR (400 MHz, CDCl3): δ = 9.88 (s, 0.01 H), 7.84 (d, J = 8.2 Hz, 2 H), 7.00 (d, J = 8.2 Hz, 2 H), 3.89 (s, 3 H). 2H NMR (77 MHz, CHCl3): δ = 9.91 (br s).
- 15 Because of the volatility of the aldehyde products, yields were determined by 1H NMR with CH2Br2 as an internal standard, unless otherwise noted.
For the physical and toxicological properties of CPME, see: