Synlett 2020; 31(10): 997-1002
DOI: 10.1055/s-0040-1707991
letter
© Georg Thieme Verlag Stuttgart · New York

Lanthanum(III) Trifluoromethanesulfonate Catalyzed Direct Synthesis of Ureas from N-Benzyloxycarbonyl-, N-Allyloxycarbonyl-, and N-2,2,2-Trichloroethoxycarbonyl-Protected Amines

Tien Tan Bui
a   Department of Nuclear Medicine, Molecular Imaging and Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea   Email: hkkim717@jbnu.ac.kr
b   Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
,
Hee-Kwon Kim
a   Department of Nuclear Medicine, Molecular Imaging and Therapeutic Medicine Research Center, Jeonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea   Email: hkkim717@jbnu.ac.kr
b   Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
› Author Affiliations
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07047572).
Further Information

Publication History

Received: 09 January 2020

Accepted after revision: 16 February 2020

Publication Date:
06 March 2020 (online)


Abstract

A novel lanthanum triflate mediated conversion of N-benzyl­oxycarbonyl-, N-allyloxycarbonyl-, and N-trichloroethoxycarbonyl-­protected amines into nonsymmetric ureas was discovered. In this study, lanthanum triflate was found to be an effective catalyst for preparing various nonsymmetric ureas from protected amines. A variety of protected aromatic and aliphatic carbamates reacted readily with various amines in the presence of lanthanum triflate to generate the desired ureas in high yields. This result demonstrated that this novel lanthanum triflate catalyzed preparation of ureas from Cbz, Alloc, and Troc carbamates can be employed for the formation of various urea structures.

Supporting Information

 
  • References and Notes

  • 1 Gurulingappa H, Amador ML, Zhao M, Rudek MA, Hidalgo M, Khan SR. Bioorg. Med. Chem. Lett. 2004; 14: 2213
  • 2 Barrow JC, Nantermet PG, Selnick HG, Glass KL, Ngo PL, Young MB, Pellicore JM, Breslina MJ, Hutchinson JH, Freidinger RM, Condra C, Karczewski J, Bednar RA, Gaul SL, Stern A, Gould R, Connolly TM. Bioorg. Med. Chem. Lett. 2001; 11: 2691
  • 3 Burrows JN, Cumming JG, Fillery SM, Hamlin GA, Hudson JA, Jackson RJ, McLaughlin S, Shaw JS. Bioorg. Med. Chem. Lett. 2005; 15: 25
  • 4 Kempf DJ, Marsh KC, Paul DA, Knigge MF, Norbeck DW, Kohlbrenner WE, Codacovi L, Vasavanonda S, Bryant P, Wang XC. Antimicrob. Agents Chemother. 1991; 35: 2209
  • 5 Getman DP, DeCrescenzo GA, Heintz RM, Reed KL, Talley JJ, Bryant ML, Clare M, Houseman KA, Marr JJ, Mueller RA, Vasquez ML, Shieh H.-S, Stallings WC, Stegeman RA. J. Med. Chem. 1993; 36: 288
  • 6 Zweckberger K, Simunovic F, Kiening KL, Unterberg AW, Sakowitz OW. Neurosci. Lett. 2010; 470: 150
  • 7 Scozzafava A, Mastrolorenzo A, Supuran CT. J. Enzyme Inhib. 2001; 16: 425
  • 8 Abad A, Agulló C, Cuñat AC, Jiménez R, Vilanova C. J. Agric. Food Chem. 2004; 52: 4675
  • 9 Lu W, Zhou Q, Liu G. J. Agric. Food Chem. 2004; 52: 7759
  • 10 Barker TJ, Duncan KK, Otrubova K, Boger DL. ACS Med. Chem. Lett. 2013; 4: 985
  • 11 Sidda JD, Song L, Poon V, Al-Bassam M, Lazos O, Buttner MJ, Challis GL, Corre C. Chem. Sci. 2014; 5: 86
  • 12 Schwartz BD, Skinner-Adams TS, Andrews KT, Coster MJ, Edstein MD, MacKenzie D, Charman SA, Koltun M, Blundell S, Campbell A, Pouwer RH, Quinn RJ, Beattie KD, Healy PC, Davis RA. Org. Biomol. Chem. 2015; 13: 1558
  • 13 Choi S.-J, Lee J.-H, Lee Y.-H, Hwang D.-Y, Kim H.-D. J. Appl. Polym. Sci. 2011; 121: 3516
  • 14 Pereira EI, Minussi FB, da Cruz CC, Bernardi AC, Ribeiro C. J. Agric. Food Chem. 2012; 60: 5267
  • 15 Böhmer V, Vysotsky MO. Aust. J. Chem. 2001; 54: 671
  • 16 Fischer L, Guichard G. Org. Biomol. Chem. 2010; 8: 3101
  • 17 Dou C, Wang C, Zhang H, Gao H, Wang Y. Chem. Eur. J. 2010; 16: 10744
  • 18 Steed JW. Chem. Commun. 2011; 47: 1379
  • 19 Byrne P, Lloyd GO, Applegarth L, Anderson KM, Clarke N, Steed JW. New J. Chem. 2010; 34: 2261
  • 20 Van Gool M, Bartolomé JM, Macdonald GJ. Tetrahedron Lett. 2008; 49: 7171
  • 21 Gallou I. Org. Prep. Proced. Int. 2007; 39: 355
  • 22 McReynolds MD, Sprott KT, Hanson PR. Org. Lett. 2002; 4: 4673
  • 23 Deng H, Bannister TD, Jin L, Babine RE, Quinn J, Nagafuji P, Celatka CA, Lin J, Lazarova TI, Rynkiewicz MJ, Bibbins F, Pandey P, Gorga J, Meyers HV, Abdel-Meguid SS, Strickler JE. Bioorg. Med. Chem. Lett. 2006; 16: 3049
  • 24 Ke D, Zhan C, Li X, Li AD. Q, Yao J. Tetrahedron 2009; 65: 8269
  • 25 Radeke HS, Purohit A, Harris TD, Hanson K, Jones R, Hu C, Yalamanchili P, Hayes M, Yu M, Guaraldi M, Kagan M, Azure M, Cdebaca M, Robinson S, Casebier D. ACS Med. Chem. Lett. 2011; 2: 650
  • 26 Shibata S, Gillespie JR, Ranade RM, Koh CY, Kim JE, Laydbak JU, Zucker FH, Hol WG. J, Verlinde CL. M. J, Buckner FS, Fan E. J. Med. Chem. 2012; 55: 6342
  • 27 Shi F, Zhang Q, Ma Y, He Y, Deng Y. J. Am. Chem. Soc. 2005; 127: 4182
  • 28 Shi F, Deng Y, SiMa T, Peng J, Gu Y, Qiao B. Angew. Chem. Int. Ed. 2003; 42: 3257
  • 29 Wu C, Cheng H, Liu R, Wang Q, Hao Y, Yu Y, Zhao F. Green Chem. 2010; 12: 1811
  • 30 Tamura M, Ito K, Nakagawa Y, Tomishige K. J. Catal. 2016; 343: 75
  • 31 Huang X, Zhuang T, Kates PA, Gao H, Chen X, Groves JT. J. Am. Chem. Soc. 2017; 139: 15407
  • 32 Romano B, Plano D, Encío I, Palop JA, Sanmartín C. Bioorg. Med. Chem. 2015; 23: 1716
  • 33 Yasui E, Takayama K, Nakago T, Takeda N, Imamura Y, Nagumo S. Chem. Pharm. Bull. 2014; 62: 304
  • 34 Saitoh T, Shimada C, Takeiri M, Shiino M, Ohba S, Obata R, Ishikawa Y, Umezawa K, Nishiyama S. Bioorg. Med. Chem. Lett. 2010; 20: 5638
  • 35 Hodnik Z, Mašič LP, Tomašić T, Smodiš D, D’Amore C, Fiorucci S, Kikelj D. J. Med. Chem. 2014; 57: 4819
  • 36 Meddad-Belhabich N, Aoun D, Djimdé A, Redeuilh C, Dive G, Massicot F, Chau F, Heymans F, Lamouri A. Bioorg. Med. Chem. 2010; 18: 3588
  • 37 Admas TH, Bernat V, Heinrich MR, Tschammer N. ChemMedChem 2016; 11: 575
  • 38 Fujimoto J, Hirayama T, Hirata Y, Hikichi Y, Murai S, Hasegawa M, Hasegawa Y, Yonemori K, Hata A, Aoyama K, Cary DR. Bioorg. Med. Chem. 2017; 25: 3018
  • 39 Isodro-Llobet A, Álvarez M, Albericio F. Chem. Rev. 2009; 109: 2455
  • 40 Kang S, Kim H.-K. Tetrahedron 2018; 74: 4036
  • 41 Jang HS, Kim H.-K. Bull. Korean Chem. Soc. 2017; 38: 1515
  • 42 Tran VH, Kim H.-K. New J. Chem. 2019; 43: 14093
  • 43 Dzudza A, Marks TJ. J. Org. Chem. 2008; 73: 4004
  • 44 Kobayashi S, Hachiya I. J. Org. Chem. 1994; 59: 3590
  • 45 Liao Y, Liu X, Zhang Y, Xu Y, Xia Y, Lin L, Feng X. Chem. Sci. 2016; 7: 3775
  • 46 Curini M, Epifano F, Marcotullio MC, Rosati O. Eur. J. Org. Chem. 2002; 1562
  • 47 N-Butyl-N′-phenylurea (3a); Typical ProcedureButylamine (2a; 0.110 g, 1.5 mmol) was added dropwise to a solution of N-Cbz-aniline (1a; 0.177 g, 1.00 mmol) and La(OTf)3 (0.088 g, 0.15 mmol) in PhCF3 (2 mL) at r.t., and the mixture was stirred and heated to 70 °C for 12 h under N2. The mixture was then cooled to r.t. and 1 M aq HCl (10 mL) was added. The resulting mixture was extracted with CH2Cl2 (2 × 20 mL), and the combined organic layers were dried (Na2SO4) and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (silica gel, 0–50% hexane–EtOAc) to give a white solid; yield: 0.180 g (94%); mp 129–131 °C.1H NMR (400 MHz, DMSO-d 6): δ = 8.35 (s, 1 H), 7.39–7.36 (m, 2 H), 7.22–7.18 (m, 2 H), 6.89 (t, J = 7.2 Hz, 1 H), 6.08 (t, J = 5.2 Hz, 1 H), 3.08 (q, J = 6.0 Hz, 2 H), 1.45–1.38 (m, 2 H), 1.34–1.24 (m, 2 H), 0.89 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 155.64, 141.06, 129.05 (2 C), 112.31, 111.7 (2 C), 39.13, 32.35, 19.99, 14.16. HRMS (ESI): m/z [M + H]+ calcd for C11H17N2O: 193.1341; found: 193.1336.