Synthesis 2020; 52(20): 3018-3028
DOI: 10.1055/s-0040-1707895
paper
© Georg Thieme Verlag Stuttgart · New York

Decarboxylative-Mediated Regioselective 1,3-Dipolar Cycloaddition for Diversity-Oriented Synthesis of Structurally exo′-Selective Spiro[oxindole-pyrrolidine-dihydrocoumarin] Hybrids

Xiong-Wei Liu
a   College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, P. R. of China
,
Shun-Qin Chang
b   Guizhou Medicine Edible Plant Resources Research and Development Center, Guizhou University, Guiyang, 550025, P. R. of China
,
c   Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. of China   Email: zhouy@gzu.edu.cn
,
Shuang Chen
b   Guizhou Medicine Edible Plant Resources Research and Development Center, Guizhou University, Guiyang, 550025, P. R. of China
,
Jun-Xin Wang
b   Guizhou Medicine Edible Plant Resources Research and Development Center, Guizhou University, Guiyang, 550025, P. R. of China
,
Wei Zhou
b   Guizhou Medicine Edible Plant Resources Research and Development Center, Guizhou University, Guiyang, 550025, P. R. of China
,
Ying Zhou
a   College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, P. R. of China
› Author Affiliations
We are grateful for the financial support from the NSFC (81660576), Project of Guizhou Province ([2020]1Y396, [2019]1402, and [2015]4032) and Doctoral Project of Guizhou University of Traditional Chinese Medicine ([2019]05).
Further Information

Publication History

Received: 15 February 2020

Accepted after revision: 02 June 2020

Publication Date:
09 July 2020 (online)


Abstract

A general and practical three-component regioselective 1,3-dipolar cycloaddition of 3-amino-oxindole-based azomethine ylides and coumarins has been developed. This reaction displayed good substrate tolerance and gave a diverse array of biologically relevant spiro[ox-­i­ndole-pyrrolidine-dihydrocoumarin] derivatives bearing four contiguous stereocenters including one spiro quaternary center in moderate to high yields (up to 90%) with high diastereoselectivities (up to 15:1 dr). It is based on the application of carboxylic acid activated coumarins as dienophiles followed by a decarboxylation process. The possible mechanism of the 1,3-dipolar cycloaddition is proposed via an exo′-transition state. Furthermore, this is the first example of decarboxylative-mediated regioselective 1,3-dipolar cycloaddition of 3-amino-oxindole-based azomethine ylides and coumarins.

Supporting Information

 
  • References

    • 1a Murray RD. H. Nat. Prod. Rep. 1989; 6: 591
    • 1b Murray RD. H. Nat. Prod. Rep. 1995; 12: 477
    • 1c Estevez-Braun A, Gonzalez AG. Nat. Prod. Rep. 1997; 14: 465
    • 1d McGlacken GP, Fairlamb IJ. S. Nat. Prod. Rep. 2005; 22: 369
    • 1e Asai F, Iinuma M, Tanaka T, Mizuno M. Phytochemistry 1991; 30: 3091
    • 1f Asai F, Iinuma M, Tanaka T, Mizuno M. Heterocycles 1992; 33: 229
    • 1g Iinuma M, Tanaka T, Takenaka M, Mizuno M, Asai F. Phytochemistry 1992; 31: 2487
    • 1h Wang W.-B, Zhu Y.-S, Guo S.-Q, Wang Q.-L, Bu Z.-W. Org. Biomol. Chem. 2016; 14: 4420
    • 2a Dubuffet T, Newman-Tancerdi A, Cussac D, Audinot V, Loutz A, Millan MJ, Lavielle G. Bioorg. Med. Chem. Lett. 1999; 9: 2059
    • 2b James CA, Coelho AL, Gevaert M, Forgione P, Snieckus V. J. Org. Chem. 2009; 74: 4094
    • 2c Muthukrishnan I, Vinoth P, Vivekanand T, Nagarajan S, Maheswari CU, Menendez JC, Sridharan V. J. Org. Chem. 2016; 81: 1116
    • 2d Yu L.-S.-H, Dong J.-L, Gao Z.-J, Wang J, Xie J.-W. Synthesis 2018; 50: 1667
    • 2e Posakony J, Hirao M, Stevens S, Simon JA, Bedalov A. J. Med. Chem. 2004; 47: 2635
    • 2f Wu P.-L, Hsu Y.-L, Zao C.-W, Damu AG, Wu T.-S. J. Nat. Prod. 2005; 68: 1180
    • 2g Zhang X.-f, Wang H.-M, Song Y.-L, Nie L.-H, Wang L.-F, Liu B, Shen P, Liu Y. Bioorg. Med. Chem. Lett. 2006; 16: 949
    • 2h Musa MA, Cooperwood JS, Khan MO. F. Curr. Med. Chem. 2008; 15: 2664
    • 2i Zhang X.-F, Xie L, Liu Y, Xiang J.-F, Li L, Tang Y.-L. J. Mol. Struct. 2008; 888: 145
    • 2j Deredas D, Huben K, Janecka A, Długosz A, Pomorska DK, Mirowski M, Krajewska U, Janeckia T, Krawczyk H. MedChemComm 2016; 7: 1745
    • 2k Lei C.-W, Zhang C.-B, Wang Z.-H, Xie K.-X, Zhao J.-Q, Zhou M.-Q, Zhang X.-M, Xu X.-Y, Yuan W.-C. Org. Biomol. Chem. 2020; 18: 845
    • 2l Lei C.-W, Zhang C.-B, Wang Z.-H, Xie K.-X, Zhao J.-Q, Zhou M.-Q, Zhang X.-M, Xu X.-Y, Yuan W.-C. Org. Chem. Front. 2020; 7: 499
    • 2m Jin S.-J, Guo J.-M, Zhu Y.-S, Wang Q.-L, Bu Z.-W. Org. Biomol. Chem. 2017; 15: 8729
    • 3a Girgis AS. Eur. J. Med. Chem. 2009; 44: 91
    • 3b Raj AA, Raghunathan R, SrideviKumari MR, Raman N. Bioorg. Med. Chem. 2003; 11: 407
    • 3c Ali MA, Ismail R, Choon TS, Yoon YK, Wei AC, Pandian S, Kumar RS, Osman H, Manogaran E. Bioorg. Med. Chem. Lett. 2010; 20: 7064
    • 3d Ding M, Zhou F, Liu YL, Wang CH, Zhao XL, Zhou J. Chem. Sci. 2011; 2: 2035
    • 3e Fan T, Zhang HH, Li C, Shen Y, Shi F. Adv. Synth. Catal. 2016; 358: 2017
    • 3f Tan W, Li X, Gong YX, Ge MD, Shi F. Chem. Commun. 2014; 50: 15901
    • 3g Cao ZY, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
    • 3h Xu PW, Liu JK, Shen L, Cao ZY, Zhao XL, Yan J, Zhou J. Nat. Commun. 2017; 8: 1619
    • 3i Zhu Y, Zhou J, Jin S, Dong H, Guo J, Bai X, Wang Q, Bu Z. Chem. Commun. 2017; 53: 11201
    • 3j Yin XP, Zeng XP, Liu YL, Liao FM, Yu JS, Zhou F, Zhou J. Angew. Chem. Int. Ed. 2014; 53: 13740
    • 3k Zhu YS, Yuan BB, Guo JM, Jin SJ, Dong HH, Wang QL, Bu ZW. J. Org. Chem. 2017; 82: 5669
    • 3l Bai XG, Wang LL, Zhang ZY, Zhang K, Bu ZW, Wu YF, Zhang WJ, Wang QL. Adv. Synth. Catal. 2019; 361: 4893
    • 4a Viegas-Junior C, Danuello A, Bolzani VD. S, Barreiro EJ, Fraga CA. M. Curr. Med. Chem. 2007; 14: 1829
    • 4b Fortin S, Bérubé G. Expert Opin. Drug Discovery 2013; 8: 1029
    • 4c Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
    • 4d Guo JM, Bai XG, Wang QL, Bu ZW. J. Org. Chem. 2018; 83: 3679
    • 4e Zhou F, Tan C, Tang J, Zhang YY, Gao WM, Wu HH, Yu YH, Zhou J. J. Am. Chem. Soc. 2013; 135: 10994
    • 4f O’Connor CJ, Beckmann HS. G, Spring DR. Chem. Soc. Rev. 2012; 41: 4444
    • 4g Bon RS, Waldmann H. Acc. Chem. Res. 2010; 43: 1103
    • 4h Wetzel S, Bon RS, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 10800
    • 4i Sharma I, Tan DS. Nat. Chem. 2013; 5: 157
    • 4j Wang LL, Han HB, Cui ZH, Zhao JW, Bu ZW, Wang QL. Org. Lett. 2020; 22: 873
    • 5a Wang Z.-L. Adv. Synth. Catal. 2013; 355: 2745
    • 5b Nakamura S. Org. Biomol. Chem. 2014; 12: 394
    • 5c Bojanowski J, Albrecht A. Asian J. Org. Chem. 2019; 8: 746
    • 5d Xu L, Shao Z, Wang L, Xiao J. Org. Lett. 2014; 16: 796
    • 5e Shao Z, Xu L, Wang L, Wie H, Xiao J. Org. Biomol. Chem. 2014; 12: 2185
    • 5f Talhi O, Brodziak-Jarosz L, Panning J, Orlikova B, Zwergel C, Tzanova T, Philippot S, Pinto DC. G. A, Almeida Paz FA, Gerhäuser C, Dick TP, Jacob C, Diederich M, Bagrel D, Kirsch G, Silva AM. S. Eur. J. Org. Chem. 2016; 965
    • 5g Song A.-G, Zhang X.-S, Song X.-X, Chen X.-B, Yu C.-G, Huang H, Li H, Wang W. Angew. Chem. Int. Ed. 2014; 53: 4940
    • 5h Zuo X, Chen S, Xu S.-W, Chang S.-Q, Liu X.-L, Zhou Y, Yuan W.-C. Synthesis 2019; 51: 2339
    • 5i Albrecht A, Bojanowski J. Adv. Synth. Catal. 2017; 359: 2907
    • 5j Albrecht A, Bojanowski J, Kot A, Sieroń L. Org. Biomol. Chem. 2019; 17: 4238
    • 5k Zhang K, Han HB, Wang LL, Zhang ZY, Wang QL, Bu ZW. Chem. Commun. 2019; 55: 13681
    • 6a Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 6b Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 6c Kissane M, Maguire AR. Chem. Soc. Rev. 2010; 39: 845
    • 6d Adrio J, Carretero JC. Chem. Commun. 2011; 47: 6784
    • 6e Adrio J, Carretero JC. Chem. Commun. 2014; 50: 12434
    • 6f Narayan R, Potowski M, Jia Z.-J, Antonchick AP, Waldmann H. Acc. Chem. Res. 2014; 47: 1296
    • 6g Zhu L, Ren X, Liao Z, Pan J, Jiang C, Wang T. Org. Lett. 2019; 21: 8667
    • 6h Yang S.-Y, Han WY, He C, Cui BD, Wan NW, Chen YZ. Org. Lett. 2019; 21: 8857
    • 6i Li M.-Z, Tong Q, Han W.-Y, Yang S.-Y, Cui B.-D, Wan N.-W, Chen Y.-Z. Org. Biomol. Chem. 2020; 18: 1112
    • 6j Zhu YS, Wang WB, Yuan BB, Li YN, Wang QL, Bu ZW. Org. Biomol. Chem. 2017; 15: 984
    • 6k Miao HJ, Wang LL, Han HB, Zhao YD, Wang QL, Bu ZW. Chem. Sci. 2020; 11: 1418
    • 7a Sun H, Wang X, Chen Y, Ouyang L, Liu J, Zhang Y. Tetrahedron Lett. 2014; 55: 5434
    • 7b Zhu G, Wang B, Bao X, Zhang H, Wei Q, Qu J. Chem. Commun. 2015; 51: 15510
    • 7c Wei Q, Zhu G, Zhang H, Qu J, Wang B. Eur. J. Org. Chem. 2016; 5335
    • 7d Zhu G, Wei Q, Chen H, Zhang Y, Shen W, Qu J, Wang B. Org. Lett. 2017; 19: 1862
    • 7e Jin L, Liang F. Molecules 2018; 23: 582
    • 7f Wu S, Zhu G, Wei S, Chen H, Qu J, Wang B. Org. Biomol. Chem. 2018; 16: 807
    • 7g He J, Sun R, Fan L, Tian SY, Huang TP, Chen Z, Chen L. Synthesis 2019; 51: 1353
    • 7h Zhu G, Liu S, Wu S, Peng L, Qu J, Wang B. J. Org. Chem. 2017; 82: 4317
    • 7i Guo JM, Zhao Y, Fang DM, Wang QL, Bu ZW. Org. Biomol. Chem. 2018; 16: 6025
  • 8 CCDC1978362 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 9a Kim HY, Li JY, Kim S, Oh K. J. Am. Chem. Soc. 2011; 133: 20750
    • 9b Arai T, Yokoyama N, Mishiro A, Sato H. Angew. Chem. Int. Ed. 2010; 49: 7895
    • 10a Mosman TJ. Immunol. Methods 1983; 65: 55
    • 10b Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Shoemaker RH, Boyd MR. Cancer Res. 1988; 48: 589