Semin Liver Dis 2020; 40(02): 180-188
DOI: 10.1055/s-0039-3402516
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Matrisome, Inflammation, and Liver Disease

Christine E. Dolin
1   Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, Kentucky
,
Gavin E. Arteel
2   Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
3   Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
› Author Affiliations
Further Information

Publication History

Publication Date:
07 January 2020 (online)

Abstract

Chronic fatty liver disease is common worldwide. This disease is a spectrum of disease states, ranging from simple steatosis (fat accumulation) to inflammation, and eventually to fibrosis and cirrhosis if untreated. The fibrotic stage of chronic liver disease is primarily characterized by robust accumulation of extracellular matrix (ECM) proteins (collagens) that ultimately impairs the function of the organ. The role of the ECM in early stages of chronic liver disease is less well-understood, but recent research has demonstrated that several changes in the hepatic ECM in prefibrotic liver disease are not only present but may also contribute to disease progression. The purpose of this review is to summarize the established and proposed changes to the hepatic ECM that may contribute to inflammation during earlier stages of disease development, and to discuss potential mechanisms by which these changes may mediate the progression of the disease.

 
  • References

  • 1 Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 2016; 49: 10-24
  • 2 Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics 2012; 11 (04) 014647
  • 3 Hynes RO. The extracellular matrix: not just pretty fibrils. Science 2009; 326 (5957): 1216-1219
  • 4 Martinez-Hernandez A, Amenta PS. The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Arch A Pathol Anat Histopathol 1993; 423 (01) 1-11
  • 5 Friedman SL. Extracellular matrix. In: Dufour JF, Clavien PA. , eds. Signaling Pathways in Liver Diseases. Berlin: Springer; 2010: 93-104
  • 6 Griffiths MR, Keir S, Burt AD. Basement membrane proteins in the space of Disse: a reappraisal. J Clin Pathol 1991; 44 (08) 646-648
  • 7 Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science 2014; 346 (6212): 941-945
  • 8 Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014; 15 (12) 786-801
  • 9 Harvey A, Montezano AC, Lopes RA, Rios F, Touyz RM. Vascular fibrosis in aging and hypertension: molecular mechanisms and clinical implications. Can J Cardiol 2016; 32 (05) 659-668
  • 10 Sessions AO, Engler AJ. Mechanical regulation of cardiac aging in model systems. Circ Res 2016; 118 (10) 1553-1562
  • 11 Saccà SC, Gandolfi S, Bagnis A. , et al. From DNA damage to functional changes of the trabecular meshwork in aging and glaucoma. Ageing Res Rev 2016; 29: 26-41
  • 12 Phillip JM, Aifuwa I, Walston J, Wirtz D. The mechanobiology of aging. Annu Rev Biomed Eng 2015; 17: 113-141
  • 13 Martinez-Hernandez A, Amenta PS. The extracellular matrix in hepatic regeneration. FASEB J 1995; 9 (14) 1401-1410
  • 14 Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J Hepatol 2002; 36 (02) 200-209
  • 15 Zeisberg M, Yang C, Martino M. , et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 2007; 282 (32) 23337-23347
  • 16 Robertson H, Kirby JA, Yip WW, Jones DE, Burt AD. Biliary epithelial-mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology 2007; 45 (04) 977-981
  • 17 Omenetti A, Porrello A, Jung Y. , et al. Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest 2008; 118 (10) 3331-3342
  • 18 Duarte S, Baber J, Fujii T, Coito AJ. Matrix metalloproteinases in liver injury, repair and fibrosis. Matrix Biol 2015; 44-46: 147-156
  • 19 Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med 2008; 29 (05) 258-289
  • 20 Dubail J, Apte SS. Insights on ADAMTS proteases and ADAMTS-like proteins from mammalian genetics. Matrix Biol 2015; 44-46: 24-37
  • 21 Brix K, McInnes J, Al-Hashimi A, Rehders M, Tamhane T, Haugen MH. Proteolysis mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges. Protoplasma 2015; 252 (03) 755-774
  • 22 Beier JI, Arteel GE. Alcoholic liver disease and the potential role of plasminogen activator inhibitor-1 and fibrin metabolism. Exp Biol Med (Maywood) 2012; 237 (01) 1-9
  • 23 Kisseleva T, Brenner DA. Hepatic stellate cells and the reversal of fibrosis. J Gastroenterol Hepatol 2006; 21 (Suppl. 03) S84-S87
  • 24 Pellicoro A, Aucott RL, Ramachandran P. , et al. Elastin accumulation is regulated at the level of degradation by macrophage metalloelastase (MMP-12) during experimental liver fibrosis. Hepatology 2012; 55 (06) 1965-1975
  • 25 Pellicoro A, Ramachandran P, Iredale JP. Reversibility of liver fibrosis. Fibrogenesis Tissue Repair 2012; 5 (Suppl. 01) S26
  • 26 Kagan HM. Intra- and extracellular enzymes of collagen biosynthesis as biological and chemical targets in the control of fibrosis. Acta Trop 2000; 77 (01) 147-152
  • 27 Liu SB, Ikenaga N, Peng ZW. , et al. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J 2016; 30 (04) 1599-1609
  • 28 Tatsukawa H, Furutani Y, Hitomi K, Kojima S. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 2016; 7 (06) e2244
  • 29 Poynard T, McHutchison J, Manns M. , et al. Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology 2002; 122 (05) 1303-1313
  • 30 Issa R, Zhou X, Constandinou CM. , et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 2004; 126 (07) 1795-1808
  • 31 Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO. Liver fibrosis: direct antifibrotic agents and targeted therapies. Matrix Biol 2018; 68-69: 435-451
  • 32 Huijberts MS, Schaper NC, Schalkwijk CG. Advanced glycation end products and diabetic foot disease. Diabetes Metab Res Rev 2008; 24 (Suppl. 01) S19-S24
  • 33 Preziosi ME, Monga SP. Update on the mechanisms of liver regeneration. Semin Liver Dis 2017; 37 (02) 141-151
  • 34 Luedde T, Kaplowitz N, Schwabe RF. Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 2014; 147 (04) 765-783.e4
  • 35 Michalopoulos GK, DeFrances M. Liver regeneration. Adv Biochem Eng Biotechnol 2005; 93: 101-134
  • 36 Forbes SJ, Newsome PN. Liver regeneration - mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol 2016; 13 (08) 473-485
  • 37 Younossi ZM, Stepanova M, Younossi Y. , et al. Epidemiology of chronic liver diseases in the USA in the past three decades. Gut 2019; gutjnl-2019-318813 , In press. Doi: 10.1136/gutjnl-2019-318813
  • 38 Kirpich IA, Marsano LS, McClain CJ. Gut-liver axis, nutrition, and non-alcoholic fatty liver disease. Clin Biochem 2015; 48 13-14: 923-930
  • 39 Lieber CS, Jones DP, Decarli LM. Effects of prolonged ethanol intake: production of fatty liver despite adequate diets. J Clin Invest 1965; 44: 1009-1021
  • 40 Ganesan M, Poluektova LY, Kharbanda KK, Osna NA. Liver as a target of human immunodeficiency virus infection. World J Gastroenterol 2018; 24 (42) 4728-4737
  • 41 Hajarizadeh B, Grebely J, Dore GJ. Epidemiology and natural history of HCV infection. Nat Rev Gastroenterol Hepatol 2013; 10 (09) 553-562
  • 42 Morrison ED, Kowdley KV. Genetic liver disease in adults. Early recognition of the three most common causes. Postgrad Med 2000; 107 (02) 147-152 , 155, 158–159
  • 43 Altamirano J, Bataller R. Alcoholic liver disease: pathogenesis and new targets for therapy. Nat Rev Gastroenterol Hepatol 2011; 8 (09) 491-501
  • 44 Schwartz JM, Reinus JF. Prevalence and natural history of alcoholic liver disease. Clin Liver Dis 2012; 16 (04) 659-666
  • 45 Poole LG, Dolin CE, Arteel GE. Organ-organ crosstalk and alcoholic liver disease. Biomolecules 2017; 7 (03) 7
  • 46 Seth D, Haber PS, Syn WK, Diehl AM, Day CP. Pathogenesis of alcohol-induced liver disease: classical concepts and recent advances. J Gastroenterol Hepatol 2011; 26 (07) 1089-1105
  • 47 Iredale JP, Benyon RC, Pickering J. , et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998; 102 (03) 538-549
  • 48 Vispo E, Barreiro P, Del Valle J. , et al. Overestimation of liver fibrosis staging using transient elastography in patients with chronic hepatitis C and significant liver inflammation. Antivir Ther 2009; 14 (02) 187-193
  • 49 Grgurevic I, Bozin T, Madir A. Hepatitis C is now curable, but what happens with cirrhosis and portal hypertension afterwards?. Clin Exp Hepatol 2017; 3 (04) 181-186
  • 50 Libânio D, Marinho RT. Impact of hepatitis C oral therapy in portal hypertension. World J Gastroenterol 2017; 23 (26) 4669-4674
  • 51 Byass P. The global burden of liver disease: a challenge for methods and for public health. BMC Med 2014; 12: 159
  • 52 Singh S, Osna NA, Kharbanda KK. Treatment options for alcoholic and non-alcoholic fatty liver disease: a review. World J Gastroenterol 2017; 23 (36) 6549-6570
  • 53 Hensley MK, Deng JC. Acute on chronic liver failure and immune dysfunction: a mimic of sepsis. Semin Respir Crit Care Med 2018; 39 (05) 588-597
  • 54 Li B, Selmi C, Tang R, Gershwin ME, Ma X. The microbiome and autoimmunity: a paradigm from the gut-liver axis. Cell Mol Immunol 2018; 15 (06) 595-609
  • 55 Wree A, Marra F. The inflammasome in liver disease. J Hepatol 2016; 65 (05) 1055-1056
  • 56 Gao B, Ahmad MF, Nagy LE, Tsukamoto H. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 2019; 70 (02) 249-259
  • 57 Dong X, Liu J, Xu Y, Cao H. Role of macrophages in experimental liver injury and repair in mice. Exp Ther Med 2019; 17 (05) 3835-3847
  • 58 Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14 (03) 181-194
  • 59 Robinson MW, Harmon C, O'Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016; 13 (03) 267-276
  • 60 Gressner OA, Weiskirchen R, Gressner AM. Evolving concepts of liver fibrogenesis provide new diagnostic and therapeutic options. Comp Hepatol 2007; 6: 7
  • 61 Gressner AM, Bachem MG. Cellular sources of noncollagenous matrix proteins: role of fat-storing cells in fibrogenesis. Semin Liver Dis 1990; 10 (01) 30-46
  • 62 Sweet PH, Khoo T, Nguyen S. Nonalcoholic fatty liver disease. Prim Care 2017; 44 (04) 599-607
  • 63 Beier JI, Luyendyk JP, Guo L, von Montfort C, Staunton DE, Arteel GE. Fibrin accumulation plays a critical role in the sensitization to lipopolysaccharide-induced liver injury caused by ethanol in mice. Hepatology 2009; 49 (05) 1545-1553
  • 64 Gillis SE, Nagy LE. Deposition of cellular fibronectin increases before stellate cell activation in rat liver during ethanol feeding. Alcohol Clin Exp Res 1997; 21 (05) 857-861
  • 65 Thiele GM, Duryee MJ, Freeman TL. , et al. Rat sinusoidal liver endothelial cells (SECs) produce pro-fibrotic factors in response to adducts formed from the metabolites of ethanol. Biochem Pharmacol 2005; 70 (11) 1593-1600
  • 66 Massey VL, Dolin CE, Poole LG. , et al. The hepatic “matrisome” responds dynamically to injury: characterization of transitional changes to the extracellular matrix in mice. Hepatology 2017; 65 (03) 969-982
  • 67 Poole LG, Arteel GE. Transitional remodeling of the hepatic extracellular matrix in alcohol-induced liver injury. BioMed Res Int 2016; 2016: 3162670
  • 68 Srivastava A, Jong S, Gola A. , et al. Cost-comparison analysis of FIB-4, ELF and fibroscan in community pathways for non-alcoholic fatty liver disease. BMC Gastroenterol 2019; 19 (01) 122
  • 69 Oliveira THC, Marques PE, Proost P, Teixeira MMM. Neutrophils: a cornerstone of liver ischemia and reperfusion injury. Lab Invest 2018; 98 (01) 51-62
  • 70 Karlmark KR, Weiskirchen R, Zimmermann HW. , et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 2009; 50 (01) 261-274
  • 71 Shimizu Y, Shaw S. Lymphocyte interactions with extracellular matrix. FASEB J 1991; 5 (09) 2292-2299
  • 72 Shirin H, Bruck R, Aeed H. , et al. Pentoxifylline prevents concanavalin A-induced hepatitis by reducing tumor necrosis factor alpha levels and inhibiting adhesion of T lymphocytes to extracellular matrix. J Hepatol 1998; 29 (01) 60-67
  • 73 Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 2007; 7 (09) 678-689
  • 74 Lee WY, Kubes P. Leukocyte adhesion in the liver: distinct adhesion paradigm from other organs. J Hepatol 2008; 48 (03) 504-512
  • 75 Wong J, Johnston B, Lee SS. , et al. A minimal role for selectins in the recruitment of leukocytes into the inflamed liver microvasculature. J Clin Invest 1997; 99 (11) 2782-2790
  • 76 Fox-Robichaud A, Kubes P. Molecular mechanisms of tumor necrosis factor alpha-stimulated leukocyte recruitment into the murine hepatic circulation. Hepatology 2000; 31 (05) 1123-1127
  • 77 Woodfin A, Voisin MB, Nourshargh S. Recent developments and complexities in neutrophil transmigration. Curr Opin Hematol 2010; 17 (01) 9-17
  • 78 Monneau Y, Arenzana-Seisdedos F, Lortat-Jacob H. The sweet spot: how GAGs help chemokines guide migrating cells. J Leukoc Biol 2016; 99 (06) 935-953
  • 79 Heydtmann M, Lalor PF, Eksteen JA, Hübscher SG, Briskin M, Adams DH. CXC chemokine ligand 16 promotes integrin-mediated adhesion of liver-infiltrating lymphocytes to cholangiocytes and hepatocytes within the inflamed human liver. J Immunol 2005; 174 (02) 1055-1062
  • 80 Proudfoot AE, Handel TM, Johnson Z. , et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A 2003; 100 (04) 1885-1890
  • 81 Ramaiah SK, Rittling S. Pathophysiological role of osteopontin in hepatic inflammation, toxicity, and cancer. Toxicol Sci 2008; 103 (01) 4-13
  • 82 Godfrey HP. T cell fibronectin: an unexpected inflammatory lymphokine. Lymphokine Res 1990; 9 (03) 435-447
  • 83 Federman S, Miller LM, Sagi I. Following matrix metalloproteinases activity near the cell boundary by infrared micro-spectroscopy. Matrix Biol 2002; 21 (07) 567-577
  • 84 Jülich D, Cobb G, Melo AM. , et al. Cross-scale integrin regulation organizes ECM and tissue topology. Dev Cell 2015; 34 (01) 33-44
  • 85 Patel VN, Pineda DL, Hoffman MP. The function of heparan sulfate during branching morphogenesis. Matrix Biol 2017; 57-58: 311-323
  • 86 Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010; 341 (01) 126-140
  • 87 McClelland R, Wauthier E, Uronis J, Reid L. Gradients in the liver's extracellular matrix chemistry from periportal to pericentral zones: influence on human hepatic progenitors. Tissue Eng Part A 2008; 14 (01) 59-70
  • 88 Lee-Montiel FT, George SM, Gough AH. , et al. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp Biol Med (Maywood) 2017; 242 (16) 1617-1632
  • 89 Wang S, Voisin MB, Larbi KY. , et al. Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J Exp Med 2006; 203 (06) 1519-1532
  • 90 Klaas M, Kangur T, Viil J. , et al. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue. Sci Rep 2016; 6: 27398
  • 91 Coco B, Oliveri F, Maina AM. , et al. Transient elastography: a new surrogate marker of liver fibrosis influenced by major changes of transaminases. J Viral Hepat 2007; 14 (05) 360-369
  • 92 Wu D, Birukov K. Endothelial cell mechano-metabolomic coupling to disease states in the lung microvasculature. Front Bioeng Biotechnol 2019; 7: 172
  • 93 Karki P, Birukova AA. Substrate stiffness-dependent exacerbation of endothelial permeability and inflammation: mechanisms and potential implications in ALI and PH (2017 Grover Conference Series). Pulm Circ 2018; 8 (02) 2045894018773044
  • 94 Mammoto A, Mammoto T, Kanapathipillai M. , et al. Control of lung vascular permeability and endotoxin-induced pulmonary oedema by changes in extracellular matrix mechanics. Nat Commun 2013; 4: 1759
  • 95 Hsu JJ, Lim J, Tintut Y, Demer LL. Cell-matrix mechanics and pattern formation in inflammatory cardiovascular calcification. Heart 2016; 102 (21) 1710-1715
  • 96 Allen AM, Shah VH, Therneau TM. , et al. The role of three-dimensional magnetic resonance elastography in the diagnosis of nonalcoholic steatohepatitis in obese patients undergoing bariatric surgery. Hepatology 2018 ; In press. Doi: 10.1002/hep.30483
  • 97 Hamada T, Fondevila C, Busuttil RW, Coito AJ. Metalloproteinase-9 deficiency protects against hepatic ischemia/reperfusion injury. Hepatology 2008; 47 (01) 186-198
  • 98 Mak KM, Png CY, Lee DJ, Type V. Type V collagen in health, disease, and fibrosis. Anat Rec (Hoboken) 2016; 299 (05) 613-629
  • 99 Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol 2018; 68-69: 452-462
  • 100 Song KS, Kim HS, Park KE, Kwon OH. The fibrinogen degradation products (FgDP) levels in liver disease. Yonsei Med J 1993; 34 (03) 234-238
  • 101 Santambrogio L, Rammensee HG. Contribution of the plasma and lymph degradome and peptidome to the MHC ligandome. Immunogenetics 2019; 71 (03) 203-216
  • 102 Lipowsky HH. Role of the glycocalyx as a barrier to leukocyte-endothelium adhesion. Adv Exp Med Biol 2018; 1097: 51-68
  • 103 Karsdal MA, Manon-Jensen T, Genovese F. , et al. Novel insights into the function and dynamics of extracellular matrix in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2015; 308 (10) G807 –G830
  • 104 Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol 2010; 10 (10) 712-723
  • 105 Vempati P, Popel AS, Mac Gabhann F. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev 2014; 25 (01) 1-19
  • 106 Wasmuth HE, Tacke F, Trautwein C. Chemokines in liver inflammation and fibrosis. Semin Liver Dis 2010; 30 (03) 215-225
  • 107 Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance. J Cell Sci 2006; 119 (Pt 19): 3901-3903
  • 108 Hodivala-Dilke KM, Reynolds AR, Reynolds LE. Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res 2003; 314 (01) 131-144
  • 109 Zhou HF, Chan HW, Wickline SA, Lanza GM, Pham CT. Alphavbeta3-targeted nanotherapy suppresses inflammatory arthritis in mice. FASEB J 2009; 23 (09) 2978-2985
  • 110 Patsenker E, Stickel F. Role of integrins in fibrosing liver diseases. Am J Physiol Gastrointest Liver Physiol 2011; 301 (03) G425-G434
  • 111 Seth D, Duly A, Kuo PC, McCaughan GW, Haber PS. Osteopontin is an important mediator of alcoholic liver disease via hepatic stellate cell activation. World J Gastroenterol 2014; 20 (36) 13088-13104
  • 112 Patouraux S, Rousseau D, Bonnafous S. , et al. CD44 is a key player in non-alcoholic steatohepatitis. J Hepatol 2017; 67 (02) 328-338
  • 113 McDonald B, Kubes P. Interactions between CD44 and hyaluronan in leukocyte trafficking. Front Immunol 2015; 6: 68
  • 114 Crosby HA, Lalor PF, Ross E, Newsome PN, Adams DH. Adhesion of human haematopoietic (CD34+) stem cells to human liver compartments is integrin and CD44 dependent and modulated by CXCR3 and CXCR4. J Hepatol 2009; 51 (04) 734-749
  • 115 Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1 (01) 31-39
  • 116 Sadeghi S, Vink RL. Membrane sorting via the extracellular matrix. Biochim Biophys Acta 2015; 1848 (02) 527-531
  • 117 Ivaska J, Heino J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu Rev Cell Dev Biol 2011; 27: 291-320
  • 118 Schnittert J, Bansal R, Storm G, Prakash J. Integrins in wound healing, fibrosis and tumor stroma: high potential targets for therapeutics and drug delivery. Adv Drug Deliv Rev 2018; 129: 37-53
  • 119 Ozaki I, Hamajima H, Matsuhashi S, Mizuta T. Regulation of TGF-β1-induced pro-apoptotic signaling by growth factor receptors and extracellular matrix receptor integrins in the liver. Front Physiol 2011; 2: 78
  • 120 Gay NJ, Gangloff M. Structure and function of toll receptors and their ligands. Annu Rev Biochem 2007; 76: 141-165
  • 121 Harburger DS, Calderwood DA. Integrin signalling at a glance. J Cell Sci 2009; 122 (Pt 2): 159-163
  • 122 Iwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Curr Opin Cell Biol 2015; 36: 41-47
  • 123 Lorenz L, Axnick J, Buschmann T. , et al. Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature 2018; 562 (7725): 128-132
  • 124 Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer 2018; 18 (09) 533-548
  • 125 Reddig PJ, Juliano RL. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metastasis Rev 2005; 24 (03) 425-439
  • 126 Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 2018; 15 (06) 349-364
  • 127 Widgerow AD. Cellular resolution of inflammation--catabasis. Wound Repair Regen 2012; 20 (01) 2-7
  • 128 Franitza S, Hershkoviz R, Kam N. , et al. TNF-alpha associated with extracellular matrix fibronectin provides a stop signal for chemotactically migrating T cells. J Immunol 2000; 165 (05) 2738-2747
  • 129 Cañedo-Dorantes L, Cañedo-Ayala M. Skin acute wound healing: a comprehensive review. Int J Inflamm 2019; 2019: 3706315
  • 130 Mehal WZ, Schuppan D. Antifibrotic therapies in the liver. Semin Liver Dis 2015; 35 (02) 184-198
  • 131 Hyldig K, Riis S, Pennisi CP, Zachar V, Fink T. Implications of extracellular matrix production by adipose tissue-derived stem cells for development of wound healing therapies. Int J Mol Sci 2017; 18 (06) 18
  • 132 Lumelsky N, O'Hayre M, Chander P, Shum L, Somerman MJ. Autotherapies: enhancing endogenous healing and regeneration. Trends Mol Med 2018; 24 (11) 919-930
  • 133 Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: cellular mechanisms and therapeutic strategies. Adv Drug Deliv Rev 2018; S0169-409X(18)30158-3 , In press. Doi: 10.1016/j.addr.2018.06.019
  • 134 Pritchard MT, McCracken JM. Identifying novel targets for treatment of liver fibrosis: what can we learn from injured tissues which heal without a scar?. Curr Drug Targets 2015; 16 (12) 1332-1346