J Knee Surg 2021; 34(04): 444-451
DOI: 10.1055/s-0039-1696958
Original Article

Influence of Variation in Sagittal Placement of the Femoral Component after Cruciate-Retaining Total Knee Arthroplasty

Yong-Gon Koh
1   Department of Orthopaedic Surgery, Joint Reconstruction Center, Yonsei Sarang Hospital, Seocho-gu, Seoul, Republic of Korea
,
Hyoung-Taek Hong
2   Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
,
Hwa-Yong Lee
2   Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
,
Hyo-Jeong Kim
3   Department of Sport and Healthy Aging, Korea National Sport University, Seoul, Republic of Korea
,
2   Department of Mechanical Engineering, Yonsei University, Seodaemun-gu, Seoul, Republic of Korea
› Author Affiliations

Abstract

Prosthetic alignment is an important factor for long-term survival in cruciate-retaining (CR) total knee arthroplasty (TKA). The purpose of this study is to investigate the influence of sagittal placement of the femoral component on tibiofemoral (TF) kinematics and kinetics in CR-TKA. Five sagittal placements of femoral component models with −3, 0, 3, 5, and 7 degrees of flexion are developed. The TF joint kinematics, quadriceps force, patellofemoral contact force, and posterior cruciate ligament force are evaluated using the models under deep knee-bend loading. The kinematics of posterior TF translation is found to occur with the increase in femoral-component flexion. The quadriceps force and patellofemoral contact force decrease with the femoral-component flexion increase. In addition, extension of the femoral component increases with the increase in posterior cruciate ligament force. The flexed femoral component in CR-TKA provides a positive biomechanical effect compared with a neutral position. Slight flexion could be an effective alternative technique to enable positive biomechanical effects with TKA prostheses.

Yong-Gon Koh and Hyoung-Taek Hong contributed equally to this work and should be considered co-first authors.




Publication History

Received: 12 September 2018

Accepted: 26 July 2019

Article published online:
09 September 2019

© 2019. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Tanzer M, Smith K, Burnett S. Posterior-stabilized versus cruciate-retaining total knee arthroplasty: balancing the gap. J Arthroplasty 2002; 17 (07) 813-819
  • 2 Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg Br 1991; 73 (05) 709-714
  • 3 Ritter MA, Harty LD, Davis KE, Meding JB, Berend ME. Predicting range of motion after total knee arthroplasty. Clustering, log-linear regression, and regression tree analysis. J Bone Joint Surg Am 2003; 85 (07) 1278-1285
  • 4 Shoji H, Yoshino S, Komagamine M. Improved range of motion with the Y/S total knee arthroplasty system. Clin Orthop Relat Res 1987; (218) 150-163
  • 5 Chiu KY, Ng TP, Tang WM, Yau WP. Review article: knee flexion after total knee arthroplasty. J Orthop Surg (Hong Kong) 2002; 10 (02) 194-202
  • 6 Conditt M, Howie D, Parsley B. et al. Do rotating platform prostheses restore normal knee function following TKA?. Paper presented at: 46th Annual Meeting of the Orthopaedic Research Society; 2000; Orlando, FL
  • 7 Dennis D. Proposed advantages of posterior cruciate ligament retention. Orthopaedics Today 1998;1(10):
  • 8 Lewandowski PJ, Askew MJ, Lin DF, Hurst FW, Melby A. Kinematics of posterior cruciate ligament-retaining and -sacrificing mobile bearing total knee arthroplasties. An in vitro comparison of the New Jersey LCS meniscal bearing and rotating platform prostheses. J Arthroplasty 1997; 12 (07) 777-784
  • 9 Krackow KA. The Technique of Total Knee Arthroplasty. Mosby Inc; 1990
  • 10 Ritter MA, Faris PM, Keating EM. Posterior cruciate ligament balancing during total knee arthroplasty. J Arthroplasty 1988; 3 (04) 323-326
  • 11 Andriacchi TP. Biomechanics and gait analysis in total knee replacement. Orthop Rev 1988; 17 (05) 470-473
  • 12 Andriacchi T, Alexander E, Goodman S. Understanding the role of functional adaptations in patients with total knee replacements. Paper presented at: International Conference on Knee Replacement; 1999: 1974-2024
  • 13 Dorr LD, Scott RD, Ranawat CS. Importance of retention of posterior cruciate ligament. In: Ranawat CS. ed. Total-Condylar Knee Arthroplasty. New York, NY: Springer; 1985: 197-202
  • 14 Dorr LD, Ochsner JL, Gronley J, Perry J. Functional comparison of posterior cruciate-retained versus cruciate-sacrificed total knee arthroplasty. Clin Orthop Relat Res 1988; (236) 36-43
  • 15 Rand JA. The patellofemoral joint in total knee arthroplasty. J Bone Joint Surg Am 1994; 76 (04) 612-620
  • 16 Komistek R, Dennis D, Walker S. et al. A multicenter analysis of A/P translation in TKA. J Biomech 1998; 1001 (31) 125
  • 17 Komistek R, Walker S, Crossett L. et al. In vivo kinematics of PS implanted knees during gait. J Biomech 1998; 1001 (31) 125
  • 18 Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD. Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 2004; 32 (02) 376-382
  • 19 Ostermeier S, Hurschler C, Windhagen H, Stukenborg-Colsman C. In vitro investigation of the influence of tibial slope on quadriceps extension force after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2006; 14 (10) 934-939
  • 20 Figgie III HE, Goldberg VM, Heiple KG, Moller III HS, Gordon NH. The influence of tibial-patellofemoral location on function of the knee in patients with the posterior stabilized condylar knee prosthesis. J Bone Joint Surg Am 1986; 68 (07) 1035-1040
  • 21 Heck DA, Kettelkamp DB. General considerations in total knee arthroplasty. Instr Course Lect 1986; 35: 265-271
  • 22 Hood RW, Vanni M, Insall JN. The correction of knee alignment in 225 consecutive total condylar knee replacements. Clin Orthop Relat Res 1981; (160) 94-105
  • 23 Cornell CN, Ranawat CS, Burstein AH. A clinical and radiographic analysis of loosening of total knee arthroplasty components using a bilateral model. J Arthroplasty 1986; 1 (03) 157-163
  • 24 Kim YS, Kang KT, Son J. et al. Graft extrusion related to the position of allograft in lateral meniscal allograft transplantation: biomechanical comparison between parapatellar and transpatellar approaches using finite element analysis. Arthroscopy 2015; 31 (12) 2380-91.e2
  • 25 Kang KT, Kim SH, Son J, Lee YH, Kim S, Chun HJ. Probabilistic evaluation of the material properties of the in vivo subject-specific articular surface using a computational model. J Biomed Mater Res B Appl Biomater 2017; 105 (06) 1390-1400
  • 26 Kang KT, Kim SH, Son J, Lee YH, Chun HJ. Computational model-based probabilistic analysis of in vivo material properties for ligament stiffness using the laxity test and computed tomography. J Mater Sci Mater Med 2016; 27 (12) 183
  • 27 Koh YG, Son J, Kwon SK, Kim HJ, Kwon OR, Kang KT. Preservation of kinematics with posterior cruciate-, bicruciate- and patient-specific bicruciate-retaining prostheses in total knee arthroplasty by using computational simulation with normal knee model. Bone Joint Res 2017; 6 (09) 557-565
  • 28 Kang KT, Koh YG, Son J, Kwon OR, Lee JS, Kwon SK. Influence of increased posterior tibial slope in total knee arthroplasty on knee joint biomechanics: a computational simulation study. J Arthroplasty 2018; 33 (02) 572-579
  • 29 Blankevoort L, Huiskes R. Validation of a three-dimensional model of the knee. J Biomech 1996; 29 (07) 955-961
  • 30 Mesfar W, Shirazi-Adl A. Biomechanics of the knee joint in flexion under various quadriceps forces. Knee 2005; 12 (06) 424-434
  • 31 Piefer JW, Pflugner TR, Hwang MD, Lubowitz JH. Anterior cruciate ligament femoral footprint anatomy: systematic review of the 21st century literature. Arthroscopy 2012; 28 (06) 872-881
  • 32 Bowman Jr KF, Sekiya JK. Anatomy and biomechanics of the posterior cruciate ligament, medial and lateral sides of the knee. Sports Med Arthrosc Rev 2010; 18 (04) 222-229
  • 33 Baldwin JL. The anatomy of the medial patellofemoral ligament. Am J Sports Med 2009; 37 (12) 2355-2361
  • 34 Peña E, Calvo B, Martinez MA, Palanca D, Doblaré M. Why lateral meniscectomy is more dangerous than medial meniscectomy. A finite element study. J Orthop Res 2006; 24 (05) 1001-1010
  • 35 Godest AC, Beaugonin M, Haug E, Taylor M, Gregson PJ. Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis. J Biomech 2002; 35 (02) 267-275
  • 36 Inoue S, Akagi M, Asada S, Mori S, Zaima H, Hashida M. The valgus inclination of the tibial component increases the risk of medial tibial condylar fractures in unicompartmental knee arthroplasty. J Arthroplasty 2016; 31 (09) 2025-2030
  • 37 Pegg EC, Walter J, Mellon SJ. et al. Evaluation of factors affecting tibial bone strain after unicompartmental knee replacement. J Orthop Res 2013; 31 (05) 821-828
  • 38 Vanlommel J, Luyckx JP, Labey L, Innocenti B, De Corte R, Bellemans J. Cementing the tibial component in total knee arthroplasty: which technique is the best?. J Arthroplasty 2011; 26 (03) 492-496
  • 39 Wünschel M, Lo J, Dilger T, Wülker N, Müller O. Influence of bi- and tri-compartmental knee arthroplasty on the kinematics of the knee joint. BMC Musculoskelet Disord 2011; 12: 29
  • 40 Kang KT, Koh YG, Son J. et al. Measuring the effect of femoral malrotation on knee joint biomechanics for total knee arthroplasty using computational simulation. Bone Joint Res 2016; 5 (11) 552-559
  • 41 Kutzner I, Heinlein B, Graichen F. et al. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J Biomech 2010; 43 (11) 2164-2173
  • 42 Halloran JP, Clary CW, Maletsky LP, Taylor M, Petrella AJ, Rullkoetter PJ. Verification of predicted knee replacement kinematics during simulated gait in the Kansas knee simulator. J Biomech Eng 2010; 132 (08) 081010
  • 43 Kang KT, Koh YG, Jung M. et al. The effects of posterior cruciate ligament deficiency on posterolateral corner structures under gait- and squat-loading conditions: a computational knee model. Bone Joint Res 2017; 6 (01) 31-42
  • 44 Kang KT, Koh YG, Son J. et al. Finite element analysis of the biomechanical effects of 3 posterolateral corner reconstruction techniques for the knee joint. Arthroscopy 2017; 33 (08) 1537-1550
  • 45 Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 1983; 105 (02) 136-144
  • 46 Mizu-uchi H, Colwell Jr CW, Matsuda S, Flores-Hernandez C, Iwamoto Y, D'Lima DD. Effect of total knee arthroplasty implant position on flexion angle before implant-bone impingement. J Arthroplasty 2011; 26 (05) 721-727
  • 47 Kim YH, Sohn KS, Kim JS. Range of motion of standard and high-flexion posterior stabilized total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 2005; 87 (07) 1470-1475
  • 48 Kim YH, Choi Y, Kwon OR, Kim JS. Functional outcome and range of motion of high-flexion posterior cruciate-retaining and high-flexion posterior cruciate-substituting total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 2009; 91 (04) 753-760
  • 49 Martin A, von Strempel A. Two-year outcomes of computed tomography-based and computed tomography free navigation for total knee arthroplasties. Clin Orthop Relat Res 2006; 449 (449) 275-282
  • 50 Thompson JA, Hast MW, Granger JF, Piazza SJ, Siston RA. Biomechanical effects of total knee arthroplasty component malrotation: a computational simulation. J Orthop Res 2011; 29 (07) 969-975
  • 51 Massin P, Gournay A. Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty 2006; 21 (06) 889-896
  • 52 Fantozzi S, Catani F, Ensini A, Leardini A, Giannini S. Femoral rollback of cruciate-retaining and posterior-stabilized total knee replacements: in vivo fluoroscopic analysis during activities of daily living. J Orthop Res 2006; 24 (12) 2222-2229
  • 53 Nisell R. Mechanics of the knee. A study of joint and muscle load with clinical applications. Acta Orthop Scand Suppl 1985; 216: 1-42
  • 54 Faris PM, Ritter MA, Keating EM. Sagittal plane positioning of the femoral component in total knee arthroplasty. J Arthroplasty 1988; 3 (04) 355-358
  • 55 Murphy M, Journeaux S, Hides J, Russell T. Does flexion of the femoral implant in total knee arthroplasty increase knee flexion: a randomised controlled trial. Knee 2014; 21 (01) 257-263
  • 56 Antony J, Tetsworth K, Hohmann E. Influence of sagittal plane component alignment on kinematics after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2017; 25 (06) 1686-1691
  • 57 Ostermeier S, Schlomach C, Hurschler C, Windhagen H, Stukenborg-Colsman C. Dynamic in vitro measurement of posterior cruciate ligament load and tibiofemoral stress after TKA in dependence on tibiofemoral slope. Clin Biomech (Bristol, Avon) 2006; 21 (05) 525-532
  • 58 Morberg P, Chapman-Sheath P, Morris P, Cain S, Walsh WR. The function of the posterior cruciate ligament in an anteroposterior-gliding rotating platform total knee arthroplasty. J Arthroplasty 2002; 17 (04) 484-489
  • 59 Marra MA, Strzelczak M, Heesterbeek PJC. et al. Flexing and downsizing the femoral component is not detrimental to patellofemoral biomechanics in posterior-referencing cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2018; 26 (11) 3377-3385
  • 60 Ritter MA, Lutgring JD, Davis KE, Berend ME, Pierson JL, Meneghini RM. The role of flexion contracture on outcomes in primary total knee arthroplasty. J Arthroplasty 2007; 22 (08) 1092-1096
  • 61 Zalzal P, Backstein D, Gross AE, Papini M. Notching of the anterior femoral cortex during total knee arthroplasty characteristics that increase local stresses. J Arthroplasty 2006; 21 (05) 737-743
  • 62 Bellemans J, Banks S, Victor J, Vandenneucker H, Moemans A. Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset. J Bone Joint Surg Br 2002; 84 (01) 50-53
  • 63 Kang KT, Koh YG, Son J, Kwon OR, Lee JS, Kwon SK. A computational simulation study to determine the biomechanical influence of posterior condylar offset and tibial slope in cruciate retaining total knee arthroplasty. Bone Joint Res 2018; 7 (01) 69-78