Synlett 2020; 31(08): 793-796
DOI: 10.1055/s-0039-1691736
letter
© Georg Thieme Verlag Stuttgart · New York

Ligand-Free and Recyclable Palladium(II) Acetate Catalyzes the Decarboxylative Cross-Coupling of Alkynyl Carboxylic Acids with Arylboronic Acids in Aqueous PEG-400

Bo-Xiao Tang
School of Chemistry and Chemical Engineering, The Key Laboratory of Coordination Chemistry of Jiangxi Province, and Institute of Applied Chemistry, Jinggangshan University, Ji’an 343009, P. R. of China   Email: 520tangboxiao@163.com
,
Hong Zou
,
Bao-Xing Xie
,
Hai-Qing Zhong
,
Yi-Hua Wang
,
Ying Chen
,
Min Hu
,
Qi-Qi Wen
,
Shi-Yao Yang
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (No. 21563015) and the Science and Technology Project of Jiangxi Provincial Department of Education (No. GJJ170656).
Further Information

Publication History

Received: 23 November 2019

Accepted after revision: 10 February 2019

Publication Date:
10 March 2020 (online)


Abstract

A novel and ligand-free method was developed for the decarboxylative cross-coupling of alkynylcarboxylic acids with arylboronic acids. By using an environmentally friendly H2O–poly(ethylene glycol) (PEG-400) system as the reaction medium, a series of internal alkynes were synthesized in good yields and with remarkable selectivity. The Pd(OAc)2–H2O–PEG-400 catalytic system could be used for up to three cycles without any loss of activity, demonstrating the robustness of the approach.

Supporting Information

 
  • References and Notes

  • 1 Chinchilla R, Nagera C. Chem. Rev. 2007; 107: 874
  • 2 Tour JM. Acc. Chem. Res. 2000; 33: 791
  • 3 Cosford ND. P, Tehrani L, Roppe J, Schweiger E, Smith ND, Anderson J, Bristow L, Brodkin J, Jiang X, McDonald I, Rao S, Washburn M, Varney MA. J. Med. Chem. 2003; 46: 204
  • 4 Tykwinski RR. Angew. Chem. Int. Ed. 2003; 42: 1566
  • 5 Bunz UH. F. Chem. Rev. 2000; 100: 1605
  • 6 Siemsen P, Livingston RC, Diederich F. Angew. Chem. Int. Ed. 2000; 39: 2632
  • 7 Martin RE, Diederich F. Angew. Chem. Int. Ed. 1999; 38: 1350
  • 8 Moon J, Jeong M, Nam H, Ju J, Moon JH, Jung HM, Lee S. Org. Lett. 2008; 10: 945
  • 9 Raja GC. E, Irudayanathan FM, Kim H.-S, Kim J, Lee S. J. Org. Chem. 2016; 81: 5244
  • 10 Feng C, Loh T.-P. Chem. Commun. 2010; 46: 4779
  • 11 Heo Y, Kang YY, Palani T, Lee J, Lee S. Inorg. Chem. Commun. 2012; 23: 1
  • 12 Lu L, Chellan P, Smith GS, Zhang X, Yan H, Mao J. Tetrahedron 2014; 70: 5980
  • 13 Shi L, Jia W, Li X, Jiao N. Tetrahedron Lett. 2013; 54: 1951
  • 14 Lee J.-H, Raja GC. E, Son Y, Jang J, Kim J, Lee S. Tetrahedron Lett. 2016; 57: 4824
  • 15 García Calvo-Flores F. ChemSusChem 2009; 2: 905
  • 16 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
  • 17 Li C.-J. Chem. Rev. 2005; 105: 3095
  • 18 Simon M.-O, Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
  • 19 Polshettiwar V, Decottignies A, Len C, Fihri A. ChemSusChem 2010; 3: 502
  • 20 Clarke CJ, Tu W.-C, Levers O, Bröhl A, Hallett JP. Chem. Rev. 2018; 118: 747
  • 21 Turgis R, Billault I, Acherar S, Augé J, Scherrmann M.-C. Green Chem. 2013; 15: 1016
  • 22 Dickerson TJ, Reed NN, Janda KD. Chem. Rev. 2002; 102: 3325
  • 23 Meng X, Wang Y, Wang Y, Chen B, Jin Z, Chen G, Zhao P. J. Org. Chem. 2017; 82: 6922
  • 24 Lee D.-H, Kim J.-H, Jun B.-H, Kang H, Park J, Lee Y.-S. Org. Lett. 2008; 10: 1609
  • 25 Noji M, Kondo H, Yazaki C, Yamaguchi H, Ohkura S, Takanami T. Tetrahedron Lett. 2019; 60: 1518
  • 26 Tang B.-X, Fang X.-N, Kuang R.-Y, Hu R.-H, Wang J.-W, Li P, Li X.-H. Synthesis 2013; 45: 2971
  • 27 Tang B.-X, Kuang R.-Y, Wen J.-W, Huang X, Zhang Z.-X, Shen Y.-J, Chen J.-P, Wu W.-Y. Tetrahedron Lett. 2019; 60: 1975
  • 28 Arylarynes 3; General Procedure A Schlenk tube was charged with the appropriate alkynylcarboxylic acid 1 (0.3 mmol), arylboronic acid 2 (0.5 mmol), Pd(OAc)2 (0.015 mmol), Ag2O (0.6 mmol), pyridine (0.6 mmol), H2O (0.1 g), and PEG-400 (0.9 g), and the reaction was allowed to proceed under air at 80 °C (oil-bath temperature) for 4 h. When the reaction was complete, the mixture was cooled to r.t., diluted with sat. aq NaCl (10 mL) and extracted with Et2O (3 × 20 mL). The combined organic layer was dried (Na2SO4) and transferred to a round-bottomed flask. The combined organic extracts were concentrated in vacuum, and the resulting residue was purified by column chromatography (silica gel, PE–EtOAc). 1-Methoxy-4-(phenylethynyl)benzene (3a). White solid; yield: 50 mg (80%); mp 93.8–94.7 °C. 1H NMR (400 MHz, CDCl3): δ = 7.52–7.49 (m, 2 H), 7.46 (d, J = 8.8 Hz, 2 H), 7.34–7.27 (m, 3 H), 6.86 (d, J = 8.8 Hz, 2 H), 3.80 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 159.6, 133.0, 131.4, 128.3, 127.9, 123.6, 115.3, 114.0, 89.4, 88.0, 55.2.