Synlett 2020; 31(05): 507-511
DOI: 10.1055/s-0039-1691572
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of α,α-Disubstituted Benzocyclobutane Amino Acids through [2+2] Annulation of Benzyne with Dehydroalanine

Audrey Picard
,
Stephane Ciblat
,
Further Information

Publication History

Received: 07 November 2019

Accepted after revision: 29 December 2019

Publication Date:
16 January 2020 (online)


Abstract

A mild and general method for the synthesis of α,α-disubstituted benzocyclobutane amino acids through a [2+2] annulation of benzyne with dehydroalanine is described. Yields up to 88% of the constrained quaternary amino acids can be obtained and its application in peptidomimetic synthesis is demonstrated.

Supporting Information

 
  • References and Notes

    • 1a McLean TH, Parrish JC, Braden MR, Marona-Lewicka D, Gallardo-Godoy A, Nichols DE. J. Med. Chem. 2006; 49: 5794
    • 1b Tsotinis A, Afroudakis PA, Garratt PJ, Bocianowska-Zbrog A, Sugden D. ChemMedChem 2014; 9: 2238
    • 1c Stieber J, Wieland K, Stöckl G, Ludwig A, Hofmann F. Mol. Pharmacol. 2006; 69: 1328
    • 1d Zheng Q, Tang S, Fu X, Chen Z, Ye Y, Lan X, Jiang L, Huang Y, Ding J, Geng M, Huang M, Wan H. Bioorg. Med. Chem. Lett. 2017; 27: 5262
    • 2a Vogt H, Brase S. Org. Biomol. Chem. 2007; 5: 406
    • 2b Khosla MC, Stachowiak K, Smeby RR, Bumpus FM, Piriou F, Lintner K, Fermandjian S. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 757
    • 2c Gatos M, Formaggio F, Crisma M, Valle G, Toniolo C, Bonora GM, Saviano M, Iacovino R, Menchise V, Galdiero S, Pedone C, Benedetti E. J. Pept. Sci. 1997; 2: 110
  • 3 Ramtohul YK, Blackburn T. Synlett 2008; 1159
  • 4 Gilmore CD, Allan KM, Stoltz BM. J. Am. Chem. Soc. 2008; 130: 1558
  • 5 For synthesis of monosubstituted amino-benzocyclobutane by using benzyne, see: Feltenberge JB, Hayashi R, Tang Y, Babiash ES. C, Hsung RP. Org. Lett. 2009; 11: 3666
  • 6 Ferreira PM. T, Maia HL. S, Monteiro LS, Sacramento J. J. Chem. Soc., Perkin Trans. 1 1999; 3697
  • 7 Chang M.-Y, Chen S.-T, Chang N.-C. Synth. Commun. 2003; 33: 1375
  • 8 Adams LA, Aggarwal VK, Bonnert RW, Bressel B, Cox RJ, Shepherd J, De Vincente J, Walter M, Whittingham WG, Winn CL. J. Org. Chem. 2003; 68: 9433
  • 9 Heaney H. Chem. Rev. 1962; 62: 81
  • 10 1H NMR NOE observed for selected benzocyclobutane analogues (Figure 2).
    • 11a Yoshida H, Shirakawa E, Honda Y, Hiyama T. Angew. Chem. Int. Ed. 2002; 41: 3247
    • 11b Yoshida H, Fukushima H, Ohshita J, Kunai A. J. Am. Chem. Soc. 2006; 128: 11040
  • 12 Representative Experimental Procedure: Methyl 7-[di(tert-butoxycarbonyl)amino]bicyclo[4.2.0]octa-1(6),2,4-triene-7-carboxylate (19a) To a mixture of methyl 2-[di(tert-butoxycarbonyl)amino]prop-2-enoate (18a) (121 mg, 0.4 mmol) and cesium fluoride (213 mg, 1.4 mmol) in MeCN (4.0 mL) was added 2-(trimethylsilyl)phenyl trifluoromethanesulfonate (8a) (377 mg, 1.2 mmol) and the reaction mixture was stirred at rt for 16 h. The volatiles were evaporated; the residue was diluted with water (5 mL) and extracted with EtOAc (3 × 5 mL). The combined organic extracts were dried with anhydrous Na2SO4 and filtered. The filtrate was evaporated and the crude product was purified on an Isco Combiflash chromatography column with 24 g silica gel and a gradient elution of EtOAc/hexanes (0–15%) and a flow rate of 35 mL min–1 over 20 min to afford the title product 19a as an off-white semi-solid. Yield: 130 mg (86%). 1H NMR (500 MHz, CDCl3): δ = 7.37 (d, J = 7.6 Hz, 1 H), 7.34–7.30 (m, 1 H), 7.23–7.18 (m, 1 H), 7.14 (d, J = 7.4 Hz, 1 H), 3.92 (d, J = 14.5 Hz, 1 H), 3.71 (s, 3 H), 3.55 (d, J = 14.6 Hz, 1 H), 1.50 (s, 18 H). 13C NMR (126 MHz, CDCl3): δ = 171.5, 152.7, 144.0, 142.1, 130.2, 127.4, 125.5, 122.9, 83.0, 68.1, 52.9, 44.3, 28.1. HRMS (ESI): m/z [M + H]+ calcd for C20H28NO6: 378.1911; found: 378.1908. LCMS (ESI): m/z [M + H]+ = 378.2, t R = 1.60 min; 5–100% MeCN/H2O (0.1% of 10 mM ammonium formate buffer) over 3 min.