Synlett 2020; 31(02): 194-198
DOI: 10.1055/s-0039-1691532
letter
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Free Aerobic Oxidative Cross-Coupling of Indoles with Arylidenemalononitriles

Aizhen Yang
,
Zheng Li
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. of China   Email: lizheng@nwnu.edu.cn
› Author Affiliations
The authors thank the National Natural Science Foundation of China (21462038) for the financial support of this work.
Further Information

Publication History

Received: 09 October 2019

Accepted after revision: 01 December 2019

Publication Date:
10 December 2019 (online)


Abstract

An efficient method for the direct construction of C(sp2)–C(sp2) bonds by aerobic oxidative cross-coupling of indoles with arylidenemalononitriles is described. Various [aryl(1H-indol-3-yl)methylene]malononitriles were efficiently synthesized by using air as an oxidant under mild conditions. The salient features for this protocol are no transition-metal catalysts, no organometallic reagents, high atom economy, high yield, mild conditions, and simple workup procedures.

Supporting Information

 
  • References and Notes

    • 1a Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
    • 1b Tang S, Zeng L, Lei A. J. Am. Chem. Soc. 2018; 140: 13128
    • 1c Tang S, Liu Y, Lei A. Chem 2018; 4: 27
    • 1d Morimoto K, Dohi T, Kita Y. Synlett 2017; 28: 1680
    • 1e Guo S, Kumar PS, Yang M. Adv. Synth. Catal. 2017; 359: 2
    • 1f Dong J, Wu Q, You J. Tetrahedron Lett. 2015; 56: 1591
    • 1g Liu C, Liu D, Lei A. Acc. Chem. Res. 2014; 47: 3459
    • 1h Shi W, Liu C, Lei A. Chem. Soc. Rev. 2011; 40: 2761
    • 1i Shao Z, Peng F. Angew. Chem. Int. Ed. 2010; 49: 9566
    • 1j Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 1k Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
    • 2a Wu H, Su C, Tandiana R, Liu C, Qiu C, Bao Y, Wu J, Xu Y, Lu J, Fan D, Loh KP. Angew. Chem. Int. Ed. 2018; 57: 10848
    • 2b Tan G, He S, Huang X, Liao X, Cheng Y, You J. Angew. Chem. Int. Ed. 2016; 55: 10414
    • 2c Cambeiro XC, Ahlsten N, Larrosa I. J. Am. Chem. Soc. 2015; 137: 15636
    • 2d Zhang L, Fang D.-C. Org. Biomol. Chem. 2015; 13: 7950
    • 2e Wang S, Liu W, Cen J, Liao J, Huang J, Zhan H. Tetrahedron Lett. 2014; 55: 1589
    • 2f Jiao L.-Y, Oestreich M. Chem. Eur. J. 2013; 19: 10845
    • 2g Dohi T, Ito M, Sekiguchi S, Ishikado Y, Kita Y. Heterocycles 2012; 86: 767
    • 2h Kirste A, Elsler B, Schnakenburg G, Waldvogel SR. J. Am. Chem. Soc. 2012; 134: 3571
    • 2i Wei Y, Su W. J. Am. Chem. Soc. 2010; 132: 16377
    • 2j Zhao X, Yeung CS, Dong VM. J. Am. Chem. Soc. 2010; 132: 5837
    • 2k Kita Y, Morimoto K, Ito M, Ogawa C, Goto A, Dohi T. J. Am. Chem. Soc. 2009; 131: 1668
    • 2l Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
    • 2m Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2018; 111: 1780
    • 2n Miao J, Ge H. Eur. J. Org. Chem. 2015; 7859
    • 3a Barman S, Das G, Mondal P, Pradhan K, Jana B, Bhunia D, Saha A, Kar C, Ghosh S. Chem. Commun. 2019; 55: 2356
    • 3b Aksenov AV, Smirnov AN, Magedov IV, Reisenauer MR, Aksenov NA, Aksenova IV, Pendleton AL, Nguyen G, Johnston RK, Rubin M, De Carvalho A, Kiss R, Mathieu V, Lefranc F, Correa J, Cavazos DA, Brenner AJ, Bryan BA, Rogelj S, Kornienko A, Frolova LV. J. Med. Chem. 2015; 58: 2206
    • 3c Zhang H.-C, Derian CK, McComsey DF, White KB, Ye H, Hecker LR, Li J, Addo MF, Croll D, Eckardt AJ, Smith CE, Li Q, Cheung W.-M, Conway BR, Emanuel S, Demarest KT, Andrade-Gordon P, Damiano BP, Maryanoff BE. J. Med. Chem. 2005; 48: 1725
    • 3d Breslin HJ, Miskowski TA, Kukla MJ, De Winter HL, Somers MV. F, Roevens PW. M, Kavash RW. Bioorg. Med. Chem. Lett. 2003; 13: 4467
    • 3e Hoemann MZ, Kumaravel G, Xie RL, Rossi RF, Meyer S, Sidhu A, Cuny GD, Hauske JR. Bioorg. Med. Chem. Lett. 2000; 10: 2675
    • 4a Yarosh EV, Kurokhtina AA, Larina EV, Lagoda NA, Schmidt AF. Org. Process Res. Dev. 2019; 23: 1052
    • 4b Yang Y, Shi Z. Chem. Commun. 2018; 54: 1676
    • 4c Utepova IA, Trestsova MA, Chupakhi ON, Charushin VN, Rempel AA. Green Chem. 2015; 17: 4401
    • 4d Lebrasseur N, Larrosa I. Adv. Heterocycl. Chem. 2012; 105: 309
    • 4e Joucla L, Djakovitch L. Adv. Synth. Catal. 2009; 351: 673
    • 4f Phipps RJ, Grimster NP, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
    • 4g Stuart DR, Villemure E, Fagnou K. J. Am. Chem. Soc. 2007; 129: 12072
    • 4h Stuart DR, Fagnou K. Science 2007; 316: 1172
    • 4i Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 4j Bellina F, Benelli F, Rossi R. J. Org. Chem. 2008; 73: 5529
    • 4k Lane BS, Brown MA, Sames D. J. Am. Chem. Soc. 2005; 127: 8050 ; addition/correction: J. Am. Chem. Soc. 2007, 129, 241
    • 4l Deprez NR, Kalyani D, Krause A, Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
    • 4m Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403
    • 4n Yang Q, Yin Z, Zheng L, Yuan J, Wei S, Ding Q, Peng Y. RSC Adv. 2019; 9: 5870
    • 4o Guo S, Li Y, Wang Y, Guo X, Meng X, Chen B. Adv. Synth. Catal. 2015; 357: 950
    • 5a Su W.-Q, Yang C, Xu D.-Z. Catal. Commun. 2017; 100: 38
    • 5b Desyatkin VG, Beletskaya IP. Synthesis 2017; 49: 4327
    • 5c Romanini S, Galletti E, Caruana L, Mazzanti A, Himo F, Santoro S, Fochi M, Bernardi L. Chem. Eur. J. 2015; 21: 17578
    • 5d Parsekar SB, Naik S, Naik MM, Tilve SG. Monatsh. Chem. 2015; 146: 691
    • 5e Liu R, Zhang J. Org. Lett. 2013; 15: 2266
    • 5f Singh SK, Singh KN. J. Indian Chem. Soc. 2012; 89: 401
    • 5g Gupta P, Paul S. J. Mol. Catal. A: Chem. 2012; 352: 75
    • 5h Liu X.-L, Xue D, Zhang Z.-T. J. Heterocycl. Chem. 2011; 48: 489
    • 5i Hanessian S, Stoffman E, Mi X, Renton P. Org. Lett. 2011; 13: 840
    • 5j Shen W, Wang L, Tang J, Qian Z, Tong X. Chin. J. Chem. 2010; 28: 443
  • 6 [Aryl(1H-indol-3-yl)methylene]malononitriles 2av; General Procedure A mixture of the appropriate arylidenemalononitrile 1 (0.5 mmol), indole (0.5 mmol), and KOH (1.0 mmol) in 1,4-dioxane (4 mL) was stirred at 60 °C for 2 h. When the reaction was complete (TLC), the mixture was extracted with EtOAc (3 × 10 mL), and the extracts were washed with sat. brine (3 × 10 mL). The organic phase was dried (Na2SO4) and concentrated under reduced pressure, and the residue was purified by column chromatography [silica gel, PE–EtOAc (2:1)]. [1H-Indol-3-yl(phenyl)methylene]malononitrile (2a) Yellow solid; yield: 110 mg (82%); mp 166–170 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 12.60 (s, 1 H), 8.34 (s, 1 H), 7.65 (t, J = 7.2 Hz, 1 H), 7.57–7.51 (m, 5 H), 7.19–7.15 (m, 1 H), 6.96–6.93 (m, 1 H), 6.38 (d, J = 8.1 Hz, 1 H). 13C NMR (150 MHz, DMSO-d 6): δ = 168.46, 137.58, 136.78, 134.99, 132.38, 130.30, 129.31, 126.13, 123.64, 122.15, 120.80, 116.75, 116.03, 113.52, 112.65, 72.09. HRMS (ESI): m/z [M + H]+ calcd for C18H12N3: 270.1026; found: 270.1023. [(5-Methoxy-1H-indol-3-yl)(phenyl)methylene]malononitrile (2p) Yellow solid; yield: 117 mg (78%); mp 231–233 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 12.56 (s, 1 H), 8.28 (s, 1 H), 7.69–7.64 (m, 1 H), 7.58 (t, J = 7.6 Hz, 2 H), 7.52 (dd, J = 8.4, 1.4 Hz, 2 H), 7.43 (d, J = 8.8 Hz, 1 H), 6.82 (dd, J = 8.9, 2.4 Hz, 1 H), 5.79 (d, J = 2.4 Hz, 1 H), 3.43 (s, 3 H). 13C NMR (150 MHz, DMSO-d 6): δ = 168.32, 155.38, 136.90, 135.12, 132.35, 132.10, 130.17, 129.36, 126.98, 116.88, 116.18, 114.24, 113.28, 112.58, 103.37, 71.00, 55.27. HRMS (ESI): m/z [M + H]+ calcd for C19H14N3O: 300.1131; found: 300.1132.