Synlett 2020; 31(10): 938-944
DOI: 10.1055/s-0039-1690849
account
© Georg Thieme Verlag Stuttgart · New York

The Unique Bioorthogonal Chemistry of Isonitriles

,
We acknowledge financial support from the University of Utah, the Huntsman Cancer Institute, and the Utah Science Technology and Research (USTAR) initiative.
Further Information

Publication History

Received: 31 January 2020

Accepted after revision: 17 February 2020

Publication Date:
20 March 2020 (online)


Abstract

The isocyano group is the structurally most compact bioorthogonal group known. It reacts with tetrazines under physiological conditions and has great potential for widespread use in the biosciences. In this account, we highlight the unique properties of the isocyano group as a bioorthogonal functionality. Protecting group chemistry based on the reaction of isonitriles and tetrazines that allows releasing payloads is a particular focus of the article. We further discuss the atypical steric attractions that take place in the transition state of the reaction between isonitriles and tetrazines, which result in an increase in the rate of the reaction with steric bulk of the tetrazine substituents. These findings will open up new possibilities in bioorthogonal chemistry where reactivity and stability are simultaneously desired.

1 Introduction

2 The Isocyano Group: A Structurally Compact Group for Bioorthogonal Chemistry

3 Bioorthogonal Protecting Group Chemistry

4 Steric Attractions in the Transition State Accelerate the Cycloaddition of Isonitriles and Tetrazines

5 Reactions of Tetrazines and Isonitriles are Compatible with Biomolecules and Living Organisms

6 Conclusions

 
  • References

  • 1 Devaraj NK. ACS Cent. Sci. 2018; 4: 952
  • 2 Kenry LB. Trends Chem. 2019; 1: 763
  • 3 Zheng M, Zheng L, Zhang P, Li J, Zhang Y. Molecules 2015; 20: 3190
  • 4 Li J, Chen PR. Nat. Chem. Biol. 2016; 12: 129
  • 5 Tu J, Xu M, Franzini RM. ChemBioChem 2019; 20: 1615
  • 6 Ji X, Pan Z, Yu B, De La Cruz LK, Zheng Y, Ke B, Wang B. Chem. Soc. Rev. 2019; 48: 1077
  • 7 Carell T, Vrabel M. Top. Curr. Chem. 2016; 374: 9
  • 8 Patterson DM, Nazarova LA, Prescher JA. ACS Chem. Biol. 2014; 9: 592
  • 9 Sletten EM, Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
  • 10 Blackman ML, Royzen M, Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
  • 11 Selvaraj R, Fox JM. Curr. Opin. Chem. Biol. 2013; 17: 753
  • 12 Darko A, Wallace S, Dmitrenko O, Machovina MM, Mehl RA, Chin JW, Fox JM. Chem. Sci. 2014; 5: 3770
  • 13 Chen W, Wang D, Dai C, Hamelberg D, Wang B. Chem. Commun. 2012; 48: 1736
  • 14 Lang K, Davis L, Wallace S, Mahesh M, Cox DJ, Blackman ML, Fox JM, Chin JW. J. Am. Chem. Soc. 2012; 134: 10317
  • 15 Yang J, Šečkutė J, Cole CM, Devaraj NK. Angew. Chem. Int. Ed. 2012; 51: 7476
  • 16 Patterson DM, Nazarova LA, Xie B, Kamber DN, Prescher JA. J. Am. Chem. Soc. 2012; 134: 18638
  • 17 Jewett JC, Bertozzi CR. Chem. Soc. Rev. 2010; 39: 1272
  • 18 Debets MF, van Berkel SS, Dommerholt J, Dirks AJ, Rutjes FP. J. T, van Delft FL. Acc. Chem. Res. 2011; 44: 805
  • 19 Shea KJ, Kim JS. J. Am. Chem. Soc. 1992; 114: 4846
  • 20 Smith RH, Wladkowski BD, Taylor JE, Thompson EJ, Pruski B, Klose JR, Andrews AW, Michejda CJ. J. Org. Chem. 1993; 58: 2097
  • 21 Vrabel M, Carell T. Cycloadditions in Bioorthogonal Chemistry . Springer International Publishing; Switzerland: 2018
  • 22 Giustiniano M, Basso A, Mercalli V, Massarotti A, Novellino E, Tron GC, Zhu J. Chem. Soc. Rev. 2017; 46: 1295
  • 23 Kaur T, Wadhwa P, Bagchi S, Sharma A. Chem. Commun. 2016; 52: 6958
  • 24 Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
  • 25 Tu J, Xu M, Parvez S, Peterson RT, Franzini RM. J. Am. Chem. Soc. 2018; 140: 8410
  • 26 Tu J, Svatunek D, Parvez S, Liu AC, Levandowski BJ, Eckvahl HJ, Peterson RT, Houk KN, Franzini RM. Angew. Chem. Int. Ed. 2019; 58: 9043
  • 27 Tu J, Svatunek D, Parvez S, Eckvahl HJ, Xu M, Peterson RT, Houk KN, Franzini RM. Chem. Sci. 2020; 11: 169
  • 28 Leung CS, Leung SS. F, Tirado-Rives J, Jorgensen WL. J. Med. Chem. 2012; 55: 4489
  • 29 Yang J, Liang Y, Šečkute J, Houk KN, Devaraj NK. Chem. Eur. J. 2014; 20: 3365
  • 30 Imming BP, Mohr R, Müller E, Overheu W, Seitz G. Angew. Chem., Int. Ed. Engl. 1982; 21: 20133
  • 31 Wu H, Devaraj NK. Acc. Chem. Res. 2018; 51: 1249
  • 32 Mayer S, Lang K. Synthesis 2017; 49: 830
  • 33 Stöckmann H, Neves AA, Stairs S, Brindle KM, Leeper FJ. Org. Biomol. Chem. 2011; 9: 7303
  • 34 Wainman YA, Neves AA, Stairs S, Stöckmann H, Ireland-Zecchini H, Brindle KM, Leeper FJ. Org. Biomol. Chem. 2013; 11: 7297
  • 35 Stairs S, Neves AA, Stöckmann H, Wainman YA, Ireland-Zecchini H, Brindle KM, Leeper FJ. ChemBioChem 2013; 14: 1063
  • 36 Xu M, Deb T, Tu J, Franzini RM. J. Org. Chem. 2019; 84: 15520
  • 37 Schäfer RJ. B, Monaco MR, Li M, Tirla A, Rivera-Fuentes P, Wennemers H. J. Am. Chem. Soc. 2019; 141: 18644
  • 38 Xu M, Galindo-Murillo R, Cheatham TE, Franzini RM. Org. Biomol. Chem. 2017; 15: 9855
  • 39 Xu M, Tu J, Franzini RM. Chem. Commun. 2017; 53: 6271
  • 40 Sicart R, Collin M.-P, Reymond J.-L. Biotechnol. J. 2007; 2: 221
  • 41 Klein G, Reymond J.-L. Bioorg. Med. Chem. Lett. 1998; 8: 1113
  • 42 Roller SG, Dieckhaus CM, Santos WL, Sofia RD, Macdonald TL. Chem. Res. Toxicol. 2002; 15: 815
  • 43 Jin C, Zhang Q, Lu W. Eur. J. Med. Chem. 2017; 132: 135
  • 44 Ao X, Bright SA, Taylor NC, Elmes RB. P. Org. Biomol. Chem. 2017; 15: 6104
  • 45 Rossin R, Versteegen RM, Wu J, Khasanov A, Wessels HJ, Steenbergen EJ, ten Hoeve W, Janssen HM, van Onzen AH. A. M, Hudson PJ, Robillard MS. Nat. Commun. 2018; 9: 1484
  • 46 Mejia Oneto JM, Khan I, Seebald L, Royzen M. ACS Cent. Sci. 2016; 2: 476
  • 47 Czuban M, Srinivasan S, Yee NA, Agustin E, Koliszak A, Miller E, Khan I, Quinones I, Noory H, Motola C, Volkmer R, Di Luca M, Trampuz A, Royzen M, Mejia Oneto JM. ACS Cent. Sci. 2018; 4: 1624
  • 48 Rossin R, Van Duijnhoven SM. J, Ten Hoeve W, Janssen HM, Kleijn LH. J, Hoeben FJ. M, Versteegen RM, Robillard MS. Bioconjugate Chem. 2016; 27: 1697
  • 49 Zheng Y, Ji X, Yu B, Ji K, Gallo D, Csizmadia E, Zhu M, Choudhury MR, De La Cruz LK. C, Chittavong V, Pan Z, Yuan Z, Otterbein LE, Wang B. Nat. Chem. 2018; 10: 787
  • 50 Tian Y, Lin Q. ACS Chem. Biol. 2019; 14: 2489
  • 51 Chen X, Wu Y.-W. Org. Biomol. Chem. 2016; 14: 5417
  • 52 Ramil CP, Lin Q. Chem. Commun. 2013; 49: 11007
  • 53 Karver MR, Weissleder R, Hilderbrand SA. Bioconjugate Chem. 2011; 22: 2263
  • 54 Fan X, Ge Y, Lin F, Yang Y, Zhang G, Ngai WS. C, Lin Z, Zheng S, Wang J, Zhao J, Li J, Chen PR. Angew. Chem. Int. Ed. 2016; 55: 14046
  • 55 Dommerholt J, Rutjes FP. J. T, van Delft FL. Top. Curr. Chem. 2016; 374: 16
  • 56 Bertozzi CR, Saxon E. Science 2000; 287: 2007
  • 57 Willems LI, van der Linden WA, Li N, Li K.-Y, Liu N, Hoogendoorn S, van der Marel GA, Florea BI, Overkleeft HS. Acc. Chem. Res. 2011; 44: 718
  • 58 Kovalová A, Pohl R, Vrabel M. Org. Biomol. Chem. 2018; 16: 5960
  • 59 Reisacher U, Ploschik D, Rönicke F, Cserép GB, Kele P, Wagenknecht H.-A. Chem. Sci. 2019; 10: 4032
  • 60 Svatunek D, Houszka N, Hamlin TA, Bickelhaupt FM, Mikula H. Chem. Eur. J. 2019; 25: 754
  • 61 Chen Y, Wu K.-L, Tang J, Loredo A, Clements J, Pei J, Peng Z, Gupta R, Fang X, Xiao H. ACS Chem. Biol. 2019; 14: 2793