Synlett 2020; 31(10): 925-932
DOI: 10.1055/s-0039-1690814
synpacts
© Georg Thieme Verlag Stuttgart · New York

N-Heterocyclic Carbene-Organocatalyzed Arene Formation: Application in Atroposelective Synthesis of Polysubstituted Benzenes

Ke Xu
School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, P. R. China   Email: zhutshun@mail.sysu.edu.cn
,
Ziyuan Wang
,
Tingshun Zhu
School of Chemistry, Sun Yat-Sen University, 135 Xingang West Road, Guangzhou 510275, P. R. China   Email: zhutshun@mail.sysu.edu.cn
› Author Affiliations
We acknowledge financial support from the 1000-Youth Talents Program and a young-teacher research grant from Sun Yat-Sen University.
Further Information

Publication History

Received: 31 December 2019

Accepted after revision: 18 January 2020

Publication Date:
03 February 2020 (online)


Abstract

In recent decades, organocatalysis by N-heterocyclic carbenes (NHCs) has emerged as a versatile and powerful method in organic synthesis. As a result of the power of NHC organocatalysis to produce cyclic compounds, polysubstituted benzenes, which are among the most important cyclic compounds in organic chemistry, can be synthesized efficiently and selectively. This article briefly summarizes the history of NHC organocatalysis, including recent developments in benzene-formation methods, and highlights our recent work in atroposelective arene formation by carbene-catalyzed formal [4+2] cyclo­additions. We expect that more NHC-catalyzed methods for the synthesis of asymmetric arenes will be developed in the near future, providing shortcuts to syntheses of sophisticated chiral functional molecules with polysubstituted benzene nuclei.

 
  • References

  • 1 Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
  • 2 Sheehan JC, Hunneman DH. J. Am. Chem. Soc. 1966; 88: 3666
  • 3 Enders D, Breuer K, Runsink J, Teles JH. Helv. Chim. Acta 1996; 79: 1899
    • 4a Burstein C, Glorius F. Angew. Chem. Int. Ed. 2004; 43: 6205
    • 4b Sohn SS, Rosen EL, Bode JW. J. Am. Chem. Soc. 2004; 126: 14370
  • 5 Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
  • 6 De Sarkar S, Studer A. Angew. Chem. Int. Ed. 2010; 49: 9266
    • 7a Zhang C, Hooper JF, Lupton DW. ACS Catal. 2017; 7: 2583
    • 7b Mondal S, Yetra SR, Mukherjee S, Biju AT. Acc. Chem. Res. 2019; 52: 425
  • 8 Reppe W, Schlichting O, Klager K, Toepel T. Justus Liebigs Ann. Chem. 1948; 560: 1
  • 9 Sato Y, Nishimata T, Mori M. J. Org. Chem. 1994; 59: 6133
    • 10a Stará IG, Starý I, Kollárovič A, Teplý F, Šaman D, Tichý M. J. Org. Chem. 1998; 63: 4046
    • 10b Shibata T, Fujumoto T, Yokoya K, Takagi K. J. Am. Chem. Soc. 2004; 126: 8382
    • 11a Bian M, Wang Z, Xiong X, Sun Y, Matera C, Nicolaou KC, Li A. J. Am. Chem. Soc. 2012; 134: 8078
    • 11b Lu Z, Li Y, Deng J, Li A. Nat. Chem. 2013; 5: 679
    • 11c Yang M, Li J, Li A. Nat. Commun. 2015; 6: 6445
    • 11d Yang P, Yao M, Li J, Li Y, Li A. Angew. Chem. Int. Ed. 2016; 55: 6964
    • 11e Zhang Z, Li Y, Zhao D, He Y, Gong J, Yang Z. Chem. Eur. J. 2017; 23: 1258
    • 11f Chen Y, Zhang W, Ren L, Li J, Li A. Angew. Chem. Int. Ed. 2018; 57: 952
    • 13a Evans GE, Leeper FJ, Murphy JA, Staunton J. J. Chem. Soc., Chem. Commun. 1979; 205
    • 13b Dodd JH, Weinreb SM. Tetrahedron Lett. 1979; 20: 3593
    • 13c Donner CD. Tetrahedron 2013; 69: 3747

      For selected examples, see:
    • 14a Hauser FM, Combs DW. J. Org. Chem. 1980; 45: 4071
    • 14b Kraus GA, Cho H, Crowley S, Roth B, Sugimoto H, Prugh S. J. Org. Chem. 1983; 48: 3439
    • 14c Franck RW, Bhat V, Subramaniam CS. J. Am. Chem. Soc. 1986; 108: 2455
    • 14d Hauser FM, Dorsch WA, Mal D. Org. Lett. 2002; 4: 2237
    • 14e Mal D, Patra A, Roy H. Tetrahedron Lett. 2004; 45: 7895
    • 14f Tan NP. H, Donner CD. Tetrahedron 2009; 65: 4007
    • 14g Švenda J, Hill N, Myers AG. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 6709
    • 14h Liau BB, Milgram BC, Shair MD. J. Am. Chem. Soc. 2012; 134: 16765
    • 14i Magauer T, Smaltz DJ, Myers AG. Nat. Chem. 2013; 5: 886
  • 15 Zhu T, Zheng P, Mou C, Yang S, Song B.-A, Chi YR. Nat. Commun. 2014; 5: 5027
  • 16 Zhu T, Mou C, Li B, Smetankova M, Song B.-A, Chi YR. J. Am. Chem. Soc. 2015; 137: 5658
  • 17 Huang X, Zhu T, Huang Z, Zhang Y, Jin Z, Zanoni G, Chi YR. Org. Lett. 2017; 19: 6188
    • 18a Link A, Sparr C. Angew. Chem. Int. Ed. 2014; 53: 5458
    • 18b Lotter D, Neuburger M, Rickhaus M, Häussinger D, Sparr C. Angew. Chem. Int. Ed. 2016; 55: 2920
    • 18c Fäseke VC, Sparr C. Angew. Chem. Int. Ed. 2016; 55: 7261
    • 18d Lotter D, Castrogiovanni A, Neuburger M, Sparr C. ACS Cent. Sci. 2018; 4: 656
    • 18e Witzig RM, Fäseke VC, Häussinger D, Sparr C. Nat. Catal. 2019; 2: 925
  • 19 Candish L, Levens A, Lupton DW. Chem. Sci. 2015; 6: 2366
  • 20 Nakano Y, Lupton DW. Angew. Chem. Int. Ed. 2016; 55: 3135
  • 21 Zhao C, Guo D, Munkerup K, Huang K.-W, Li F, Wang J. Nat. Commun. 2018; 9: 611
  • 22 Zhu T, Liu Y, Smetankova M, Zhuo S, Mou C, Chai H, Jin Z, Chi YR. Angew. Chem. Int. Ed. 2019; 58: 15778
  • 23 Xu K, Li W, Zhu S, Zhu T. Angew. Chem. Int. Ed. 2019; 58: 17625