Synlett 2020; 31(05): 434-438
DOI: 10.1055/s-0039-1690776
synpacts
© Georg Thieme Verlag Stuttgart · New York

Self-Assembling l-d-l-Tripeptides Dance the Twist

Maria C. Cringoli
a   University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy   Email: rdezorzi@units.it   Email: smarchesan@units.it
,
Ottavia Bellotto
a   University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy   Email: rdezorzi@units.it   Email: smarchesan@units.it
,
Rita De Zorzi
a   University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy   Email: rdezorzi@units.it   Email: smarchesan@units.it
,
Attilio V. Vargiu
b   University of Cagliari, Cittadella Universitaria, S.P. 8 km. 0.700, 09042 Monserrato (CA), Italy   Email: vargiu@dsf.unica.it
,
a   University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy   Email: rdezorzi@units.it   Email: smarchesan@units.it
› Author Affiliations
S.M. acknowledges funding from the Italian Ministry of Education and Research (MIUR) through the SIR program (Grant No. RBSI14A7PL, HOT-SPOT project).
Further Information

Publication History

Received: 11 November 2019

Accepted after revision: 02 December 2019

Publication Date:
03 January 2020 (online)


Published as part of the Special Section 11th EuCheMS Organic Division Young Investigator Workshop

Abstract

Minimalistic peptides composed of d- and l-amino acids are attractive building blocks for functional supramolecular materials, including catalysts. d-Amino acids have long been known to promote turn conformations in peptides, yet unexpected twists continue to emerge on their effects on self-assembly. The combination of single-crystal X-ray diffraction and full-atom molecular dynamics have finally unraveled fine details of how l-d-l-tripeptides visit different conformations in solution and establish key interactions in supramolecular structures.

 
  • References

  • 1 Du X, Zhou J, Shi J, Xu B. Chem. Rev. 2015; 115: 13165
  • 2 Feng Z, Zhang T, Wang H, Xu B. Chem. Soc. Rev. 2017; 46: 6470
  • 3 Amit M, Yuran S, Gazit E, Reches M, Ashkenasy N. Adv. Mater. 2018; 30: e1707083
  • 4 Adams DJ. Macromol. Biosci. 2011; 11: 160
  • 5 Reches M, Gazit E. Science 2003; 300: 625
  • 6 Ung P, Winkler DA. J. Med. Chem. 2011; 54: 1111
  • 7 Hamley IW. Chem. Rev. 2017; 117: 14015
  • 8 Sahab Negah S, Khooei A, Samini F, Gorji A. Cell Tissue Res. 2018; 371: 223
  • 9 Wu CC, Wang LC, Su YT, Wei WY, Tsai KJ. Biomaterials 2018; 185: 142
  • 10 Wojtowicz AM, Shekaran A, Oest ME, Dupont KM, Templeman KL, Hutmacher DW, Guldberg RE, Garcia AJ. Biomaterials 2010; 31: 2574
  • 11 Tao K, Levin A, Adler-Abramovich L, Gazit E. Chem. Soc. Rev. 2016; 45: 3935
  • 12 Martin AD, Wojciechowski JP, Robinson AB, Heu C, Garvey CJ, Ratcliffe J, Waddington LJ, Gardiner J, Thordarson P. Sci. Rep. 2017; 7: 43947
  • 13 Martin AD, Wojciechowski JP, Warren H, in het Panhuis M, Thordarson P. Soft Matter 2016; 12: 2700
  • 14 Frederix PW, Scott GG, Abul-Haija YM, Kalafatovic D, Pappas CG, Javid N, Hunt NT, Ulijn RV, Tuttle T. Nat. Chem. 2015; 7: 30
  • 15 Chan KH, Xue B, Robinson RC, Hauser CA. E. Sci. Rep. 2017; 7: 12897
  • 16 Sahoo JK, Nazareth C, VandenBerg MA, Webber MJ. Soft Matter 2018; 14: 9168
  • 17 Xing Q, Zhang J, Xie Y, Wang Y, Qi W, Rao H, Su R, He Z. ACS Nano 2018; 12: 12305
  • 18 Chen L, Feng J, Yang D, Tian F, Ye X, Qian Q, Wei S, Zhou Y. Chem. Sci. 2019; 10: 8171
  • 19 Bera S, Mondal S, Xue B, Shimon LJ. W, Cao Y, Gazit E. Nat. Mater. 2019; 18: 503
  • 20 Struthers MD, Cheng RP, Imperiali B. Science 1996; 271: 342
  • 21 Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J. J. Am. Chem. Soc. 2002; 124: 15030
  • 22 Marchesan S, Easton CD, Kushkaki F, Waddington L, Hartley PG. Chem. Commun. 2012; 48: 2195
  • 23 Marchesan S, Waddington L, Easton CD, Winkler DA, Goodall L, Forsythe J, Hartley PG. Nanoscale 2012; 4: 6752
  • 24 Marchesan S, Easton CD, Styan KE, Waddington LJ, Kushkaki F, Goodall L, McLean KM, Forsythe JS, Hartley PG. Nanoscale 2014; 6: 5172
  • 25 Marchesan S, Styan KE, Easton CD, Waddington L, Vargiu AV. J. Mater. Chem. B 2015; 3: 8123
  • 26 Garcia AM, Kurbasic M, Kralj S, Melchionna M, Marchesan S. Chem. Commun. 2017; 53: 8110
  • 27 Zozulia O, Dolan MA, Korendovych IV. Chem. Soc. Rev. 2018; 47: 3621
  • 28 Yang X, Wang Y, Qi W, Su R, He Z. Nanoscale 2017; 9: 15323
  • 29 Gayen K, Basu K, Bairagi D, Castelletto V, Hamley IW, Banerjee A. ACS Appl. Bio Mater. 2018; 1: 1717
  • 30 Zhang C, Shafi R, Lampel A, MacPherson D, Pappas CG, Narang V, Wang T, Maldarelli C, Ulijn RV. Angew. Chem. Int. Ed. 2017; 56: 14511
  • 31 Garcia AM, Iglesias D, Parisi E, Styan KE, Waddington LJ, Deganutti C, De Zorzi R, Grassi M, Melchionna M, Vargiu AV, Marchesan S. Chem 2018; 4: 1862
  • 32 Mondal S, Adler-Abramovich L, Lampel A, Bram Y, Lipstman S, Gazit E. Nat. Commun. 2015; 6: 8615
  • 33 Vargiu AV, Iglesias D, Styan KE, Waddington LJ, Easton CD, Marchesan S. Chem. Commun. 2016; 52: 5912
  • 34 Richardson JS. Adv. Protein Chem. 1981; 34: 167
  • 35 de Brevern AG. Sci. Rep. 2016; 6: 33191
  • 36 Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N. Nature 1993; 366: 324
  • 37 Ghadiri MR, Granja JR, Buehler LK. Nature 1994; 369: 301
  • 38 Montenegro J, Ghadiri MR, Granja JR. Acc. Chem. Res. 2013; 46: 2955
  • 39 Méndez-Ardoy A, Granja JR, Montenegro J. Nanoscale Horiz. 2018; 3: 391