Synthesis 2020; 52(03): 327-336
DOI: 10.1055/s-0039-1690614
short review
© Georg Thieme Verlag Stuttgart · New York

Ground State Cross-Coupling of Haloarenes with Arenes Initiated by Organic Electron Donors, Formed in situ: An Overview

Giuseppe Nocera
,
John A. Murphy
Further Information

Publication History

Received: 17 July 2019

Accepted after revision: 05 August 2019

Publication Date:
13 September 2019 (online)


Abstract

Many reactions have been discovered that lead to coupling of haloarenes to arenes using potassium tert-butoxide as the base, and one of a variety of organic compounds as an additive. The organic additive reacts with the base to form a strong organic electron donor in situ that initiates a base-induced homolytic aromatic substitution (BHAS) coupling reaction, by converting the haloarene into an aryl radical. This brief report presents an overview of the wide range of organic additives that can be used, and the organic electron donors that they form.

 
  • References

  • 1 Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org. Lett. 2008; 10: 4673
  • 2 Liu W, Cao H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
  • 3 Bunnett JF, Creary X. J. Org. Chem. 1974; 39: 3611
  • 4 Sun CL, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li Z.-B, Shi J. Nat. Chem. 2010; 2: 1044
  • 5 Roman DS, Takahashi Y, Charette AB. Org. Lett. 2011; 13: 3242
  • 6 Shirakawa E, Itoh K.-I, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
  • 7 Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
  • 8 Sun CL, Gu Y.-F, Wang B, Shi Z.-J. Chem. Eur. J. 2011; 17: 10844
  • 9 De S, Ghosh S, Bhunia S, Sheikh JA, Bisai A. Org. Lett. 2012; 14: 4466
  • 10 Wu Y, Wong SM, Mao F, Chan TL, Kwong FY. Org. Lett. 2012; 14: 5306
  • 11 Chen W.-C, Hsu Y.-C, Shih W.-C, Lee C.-Y, Chuang W.-H, Tsai Y.-F, Chen PP.-Y, Ong T.-G. Chem. Commun. 2012; 48: 6702
  • 12 A likely mode of action of arylhydrazines has been proposed, see: Dewanji A, Murarka S, Curran DP, Studer A. Org. Lett. 2013; 15: 6102
  • 13 Liu W, Tian F, Wang X, Yu H, Bi Y. Chem. Commun. 2013; 49: 2983
  • 14 Tanimoro K, Ueno M, Takeda K, Kirihata M, Tanimori S. J. Org. Chem. 2012; 77: 7844
  • 15 Zhou S, Doni E, Anderson GM, Kane RG, MacDougall SW, Ironmonger VM, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2014; 136: 17818
  • 16 Ng YS, Chan CS, Chan KS. Tetrahedron Lett. 2012; 53: 3911
  • 17 Zhao H, Shen J, Guo J, Ye R, Zeng H. Chem. Commun. 2013; 49: 2323
  • 18 Zhao H, Shen J, Ren C, Zeng W, Zeng H. Org. Lett. 2017; 19: 2190
  • 19 Paira R, Singh B, Hota PK, Ahmed J, Sau SC, Johnpeter JP, Mandal SK. J. Org. Chem. 2016; 81: 2432
  • 20 Banik A, Paira R, Shaw BK, Vijaykumar G, Mandal SK. J. Org. Chem. 2018; 83: 3236
  • 21 Yong G.-P, She W.-L, Zhang Y.-M, Li Y.-Z. Chem. Commun. 2011; 47: 11766
  • 22 Qiu Y, Liu Y, Yang K, Hong W, Li Z, Wang Z, Yao Z, Jiang S. Org. Lett. 2011; 13: 3556
  • 23 Wu Y, Choy PY, Kwong FY. Org. Biomol. Chem. 2014; 12: 6820
  • 24 Barham JP, Coulthard G, Kane RG, Delgado N, John MP, Murphy JA. Angew. Chem. Int. Ed. 2016; 55: 4492
  • 25 Zhang L, Yang H, Jiao L. J. Am. Chem. Soc. 2016; 138: 7151
  • 26 Murphy JA, Khan TA, Zhou S.-Z, Thomson DW, Mohan M. Angew. Chem. Int. Ed. 2005; 44: 1356
  • 27 Murphy JA, Zhou S.-Z, Thomson DW, Schoenebeck F, Mohan M, Park SR, Tuttle T, Berlouis LE. A. Angew. Chem. Int. Ed. 2007; 46: 5178
  • 28 Zhou S, Anderson GM, Mondal B, Doni E, Ironmonger V, Kranz M, Tuttle T, Murphy JA. Chem. Sci. 2014; 5: 476 ; the benzyne initiation proposed here may be responsible for other couplings seen in the absence of organic additives, see ref. 9
  • 29 Gassman PG, Benecke HP. Tetrahedron Lett. 1969; 10: 1089
  • 30 Bowne AT, Christopher TA, Levin RH. Tetrahedron Lett. 1976; 14: 4111
  • 31 Yamabe S, Minato T, Ishiwata A, Irinamihira O, Machiguchi T. J. Org. Chem. 2007; 72: 2832
  • 32 Okuma K, Sonoda S, Koga Y, Shioji K. J. Chem. Soc., Perkin Trans. 1 1999; 2997
  • 33 Leadbeater NE. Nat. Chem. 2010; 2: 1007
  • 34 Cuthbertson J, Gray VJ, Wilden JD. Chem. Commun. 2014; 50: 2575
  • 35 Yi H, Jutand A, Lei A. Chem Commun. 2015; 51: 545
  • 36 Shan X.-H, Yang B, Zheng H.-X, Qu J.-P, Kang Y.-B. Org. Lett. 2018; 20: 7898
  • 37 Poonpatana P, dos Passos Gomes G, Hurrle T, Chardon K, Bräse S, Masters K.-S, Alabugin I. Chem. Eur. J. 2017; 23: 9091
  • 38 Barham JP, Dalton SE, Allison M, Nocera G, Young A, John MP, McGuire T, Campos S, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2018; 140: 11510
  • 39 Yang H, Chu D.-Z, Jiao L. Chem. Sci. 2018; 9: 1534
  • 40 Yang H, Zhang L, Jiao L. Chem. Eur. J. 2017; 23: 65
  • 41 Scamehorn RG, Bunnett JF. J. Org. Chem. 1977; 42: 1449
  • 42 Scamehorn RG, Hardacre JM, Lukanich JM, Sharpe LR. J. Org. Chem. 1984; 49: 4881
  • 43 Guastavino JV, Rossi RA. J. Org. Chem. 2012; 77: 460
  • 44 Zhao H, Xu X, Wu W, Zhang Y. Catal. Commun. 2018; 111: 95
  • 45 Patil M. J. Org. Chem. 2016; 81: 632
  • 46 Budén ME, Guastavino JF, Rossi RA. Org. Lett. 2013; 15: 1174
  • 47 Budén ME, Bardagí JI, Puiatti M, Rossi RA. J. Org. Chem. 2017; 82: 8325
  • 48 Rajan S, Muralimohan K. Tetrahedron Lett. 1978; 19: 483
  • 49 Øpstad CL, Melø T.-B, Sliwka H.-R, Partali V. Tetrahedron 2009; 65: 7616
  • 50 Zhang M.-X, Hu X.-H, Xu Y.-H, Loh T.-P. Asian J. Org. Chem. 2015; 4: 1047
  • 51 Xu Z, Gao L, Wang L, Gong M, Wang W, Yuan R. ACS Catal. 2015; 5: 45
  • 52 Nocera G, Young A, Palumbo F, Emery KJ, Coulthard G, McGuire T, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2018; 140: 9751
  • 53 Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Nocera G, John MP, Berlouis LE. A, McGuire TM, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2016; 138: 7402