Synlett 2019; 30(19): 2107-2112
DOI: 10.1055/s-0039-1690225
synpacts
© Georg Thieme Verlag Stuttgart · New York

Iridium-Catalyzed Asymmetric C–H Borylation Enabled by Chiral Bidentate Boryl Ligands

Yongjia Shi
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 73000, P. R. of China   Email: senmiaoxu@licp.cas.cn
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Qian Gao
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 73000, P. R. of China   Email: senmiaoxu@licp.cas.cn
,
Senmiao Xu
a   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Lanzhou 73000, P. R. of China   Email: senmiaoxu@licp.cas.cn
c   Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China (Grant numbers 21573262 and 21801246) and the Natural Science Foundation of Jiangsu Province (Grant numbers BK20161259 and BK20170422) for generous financial support.
Further Information

Publication History

Received: 15 August 2019

Accepted after revision: 10 October 2019

Publication Date:
28 October 2019 (online)


Abstract

Asymmetric synthesis of optically pure organoboron compounds is a topic that has received a number of attentions owing to their particular importance in synthetic chemistry and drug discovery. We herein highlight recent advances in the iridium-catalyzed C–H borylation of diarylmethylamines and cyclopropanes enabled by chiral bidentate boryl ligands.

1 Introduction

2 Ir-Catalyzed Asymmetric C(sp2)–H Borylation of Diarylmethylamines

3 Ir-Catalyzed Enantioselective C(sp3)–H Borylation of Cyclopropanes

4 Conclusion

 
  • References

  • 1 Leonori D, Aggarwal VK. Reagent-Controlled Lithiation–Borylation . In Synthesis and Application of Organoboron Compounds . Fernández E, Whiting A. Springer International Publishing; Cham: 2015: 150
  • 2 Andres P, Ballano G, Calaza MI, Cativiela C. Chem. Soc. Rev. 2016; 45: 2291
  • 3 Corey EJ, Helal CJ. Angew. Chem. Int. Ed. 1998; 37: 1986
    • 4a Matteson DS. Chem. Rev. 1989; 89: 1535
    • 4b Lee S, Yun J. Asymmetric Catalytic Borylation of α,β-Unsaturated Acceptors. In Synthesis and Application of Organoboron Compounds. Fernández E, Whiting A. Springer International Publishing; Cham: 2015: 73
    • 4c Leonori D, Aggarwal VK. Acc. Chem. Res. 2014; 47: 3174
    • 4d Cheng Q.-Q, Zhu S.-F, Zhang Y.-Z, Xie X.-L, Zhou Q.-L. J. Am. Chem. Soc. 2013; 135: 14094
    • 4e Yang J.-M, Li Z.-Q, Li M.-L, He Q, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2017; 139: 3784
    • 4f Chen D, Zhang X, Qi W.-Y, Xu B, Xu M.-H. J. Am. Chem. Soc. 2015; 137: 5268
    • 4g Kan SB. J, Huang X, Gumulya Y, Chen K, Arnold FH. Nature 2017; 552: 132
    • 4h Wang Z, Bachman S, Dudnik AS, Fu GC. Angew. Chem. Int. Ed. 2018; 57: 14529
    • 5a Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 5b Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: 759
    • 5c Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908
    • 5d Wang Y, Shi Z.-J. Chem 2016; 1: 528
  • 6 He J, Shao Q, Wu Q, Yu J.-Q. J. Am. Chem. Soc. 2017; 139: 3344
    • 7a Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
    • 7b Cho J.-Y, Tse MK, Holmes D, Maleczka RE, Smith MR. Science 2002; 295: 305
    • 7c Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 7d Ohmura T, Torigoe T, Suginome M. J. Am. Chem. Soc. 2012; 134: 17416
    • 7e Ohmura T, Torigoe T, Suginome M. Chem. Commun. 2014; 50: 6333
    • 7f Yamamoto T, Ishibashi A, Suginome M. Org. Lett. 2017; 19: 886
    • 7g Yamamoto T, Ishibashi A, Suginome M. Org. Lett. 2019; 21: 6235
  • 8 Boller TM, Murphy JM, Hapke M, Ishiyama T, Miyaura N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 14263
    • 9a Robbins DW, Boebel TA, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 4068
    • 9b Boebel TA, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 7534
    • 10a Roosen PC, Kallepalli VA, Chattopadhyay B, Singleton DA, Maleczka RE, Smith MR. J. Am. Chem. Soc. 2012; 134: 11350
    • 10b Preshlock SM, Plattner DL, Maligres PE, Krska SW, Maleczka RE, Smith MR. Angew. Chem. Int. Ed. 2013; 52: 12915
    • 11a Ros A, Fernandez R, Lassaletta JM. Chem. Soc. Rev. 2014; 43: 3229
    • 11b Xu L, Wang G, Zhang S, Wang H, Wang L, Liu L, Jiao J, Li P. Tetrahedron 2017; 73: 7123
    • 11c Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
  • 12 Ishiyama T, Isou H, Kikuchi T, Miyaura N. Chem. Commun. 2010; 46: 159
    • 13a Kawamorita S, Murakami R, Iwai T, Sawamura M. J. Am. Chem. Soc. 2013; 135: 2947
    • 13b Kawamorita S, Ohmiya H, Hara K, Fukuoka A, Sawamura M. J. Am. Chem. Soc. 2009; 131: 5058
    • 13c Kawamorita S, Ohmiya H, Sawamura M. J. Org. Chem. 2010; 75: 3855
    • 13d Murakami R, Iwai T, Sawamura M. Synlett 2016; 27: 1187
    • 13e Murakami R, Tsunoda K, Iwai T, Sawamura M. Chem. Eur. J. 2014; 20: 13127
    • 13f Yamazaki K, Kawamorita S, Ohmiya H, Sawamura M. Org. Lett. 2010; 12: 3978
  • 14 Sasaki I, Taguchi J, Hiraki S, Ito H, Ishiyama T. Chem. Eur. J. 2015; 21: 9236
    • 15a Ros A, Estepa B, López-Rodríguez R, Álvarez E, Fernández R, Lassaletta JM. Angew. Chem. Int. Ed. 2011; 50: 11724
    • 15b Roering AJ, Hale LV. A, Squier PA, Ringgold MA, Wiederspan ER, Clark TB. Org. Lett. 2012; 14: 3558
    • 15c Hale LV. A, McGarry KA, Ringgold MA, Clark TB. Organometallics 2015; 34: 51
    • 15d Ros A, López-Rodríguez R, Estepa B, Álvarez E, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2012; 134: 4573
    • 16a Ghaffari B, Preshlock SM, Plattner DL, Staples RJ, Maligres PE, Krska SW, Maleczka RE, Smith MR. J. Am. Chem. Soc. 2014; 136: 14345
    • 16b Wang G, Liu L, Wang H, Ding Y.-S, Zhou J, Mao S, Li P. J. Am. Chem. Soc. 2017; 139: 91
  • 17 Su B, Zhou T.-G, Li X.-W, Shao X.-R, Xu P.-L, Wu W.-L, Hartwig JF, Shi Z.-J. Angew. Chem. Int. Ed. 2017; 56: 1092
    • 18a Reyes RL, Harada T, Taniguchi T, Monde K, Iwai T, Sawamura M. Chem. Lett. 2017; 46: 1747
    • 18b Reyes RL, Iwai T, Maeda S, Sawamura M. J. Am. Chem. Soc. 2019; 141: 6817
  • 19 Chu L, Wang X.-C, Moore CE, Rheingold AL, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 16344
  • 20 Zou X, Zhao H, Li Y, Gao Q, Ke Z, Xu S. J. Am. Chem. Soc. 2019; 141: 5334
    • 21a Ito H, Kosaka Y, Nonoyama K, Sasaki Y, Sawamura M. Angew. Chem. Int. Ed. 2008; 47: 7424
    • 21b Zhong C, Kunii S, Kosaka Y, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 11440
    • 21c Carreras J, Caballero A, Perez PJ. Angew. Chem. Int. Ed. 2018; 57: 2334
  • 22 Liskey CW, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 3375
  • 23 Miyamura S, Araki M, Suzuki T, Yamaguchi J, Itami K. Angew. Chem. Int. Ed. 2015; 54: 846
  • 24 Shi Y, Gao Q, Xu S. J. Am. Chem. Soc. 2019; 141: 10599
  • 25 Shao Q, Wu Q.-F, He J, Yu J.-Q. J. Am. Chem. Soc. 2018; 140: 5322