Synlett 2019; 30(15): 1820-1824
DOI: 10.1055/s-0039-1690157
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Esters from Stable and Convenient Sulfoxonium Precursors under Catalyst- and Additive-Free Conditions

Yang Yuan
,
Xiao-Feng Wu
Y.Y. thanks the China Scholarship Council for financial support.
Further Information

Publication History

Received: 16 July 2019

Accepted after revision: 25 July 2019

Publication Date:
13 August 2019 (online)


Abstract

A convenient and efficient procedure for the construction of esters from stable sulfoxonium ylides and alcohols has been developed. This protocol presents a broad substrate scope and good yields of the desired esters can be isolated. Notably, no catalyst, oxidant, base or any other additive is required.

Supporting Information

 
  • References and Notes

  • 1 Otera J, Nishikido J. Esterification: Methods, Reactions, and Applications . Wiley-VCH; Weinheim: 2003
  • 2 Larock R. Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd ed.. Wiley; New York: 1999
    • 3a Otera J. Acc. Chem. Res. 2004; 37: 288
    • 3b Hatano M, Furuya Y, Shimmura T, Moriyama K, Kamiya S, Maki T, Ishihara K. Org. Lett. 2010; 13: 426
    • 3c Ren L, Wang L, Lv Y, Li G, Gao S. Org. Lett. 2015; 17: 5172
  • 4 Brink GJ. T, Arends IW. C. E, Sheldon RA. Chem. Rev. 2004; 104: 4105
    • 5a Ekoue-Kovi K, Wolf C. Chem. Eur. J. 2008; 14: 6302
    • 5b Liu B, Hu F, Shi BF. ACS Catal. 2015; 5: 1863
    • 7a Kollár L. Modern Carbonylation Methods . John Wiley & Sons; New York: 2008
    • 7b Beller M. Catalytic Carbonylation Reactions . Springer; Berlin: 2006
    • 8a Kaiser C, Trost BM, Beeson J, Weinstock J. J. Org. Chem. 1965; 30: 3972
    • 8b Burtoloso AC, Dias RM, Leonarczyk IA. Eur. J. Org. Chem. 2013; 5005
    • 8c Vaitla J, Bayer A. Synthesis 2019; 51: 612
    • 8d Neuhaus J, Oost R, Merad J, Maulide N. Top. Curr. Chem. 2018; 376: 15
    • 8e Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
    • 9a Vaitla J, Bayer A, Hopmann KH. Angew. Chem. Int. Ed. 2017; 56: 4277
    • 9b Vaitla J, Bayer A, Hopmann KH. Angew. Chem. Int. Ed. 2018; 57: 16180
    • 9c Wang L, Cao W, Mei H, Hu L, Feng X. Adv. Synth. Catal. 2018; 360: 4089
    • 9d Neuhaus J, Bauer A, Pinto A, Maulide N. Angew. Chem. Int. Ed. 2018; 57: 16215
    • 9e Jiang H, Zhang H, Xiong W, Qi C, Wu W, Wang L, Cheng R. Org. Lett. 2019; 21: 1125
    • 9f Hu P, Zhang Y, Xu Y, Yang S, Liu B, Li X. Org. Lett. 2018; 20: 2160
    • 9g Barday M, Janot C, Halcovitch N, Muir J, Aïssa C. Angew. Chem. Int. Ed. 2017; 56: 13117
    • 9h Xu Y, Zheng Z, Yang X, Li X. Chem. Commun. 2018; 54: 670
    • 9i Zheng G, Tian M, Xu Y, Chen X, Li X. Org. Chem. Front. 2018; 5: 998
    • 9j Chen G, Zhang X, Jia R, Li B, Fan X. Adv. Synth. Catal. 2018; 360: 3781
    • 9k Xie H, Lan J, Gui J, Chen F, Jiang H, Zeng W. Adv. Synth. Catal. 2018; 360: 3534
    • 9l You C, Pi C, Wu Y, Cui X. Adv. Synth. Catal. 2018; 360: 4068
    • 9m Liu C.-F, Liu M, Dong L. J. Org. Chem. 2019; 84: 409
    • 9n Xu Y, Yang X, Zhou X, Kong L, Li X. Org. Lett. 2017; 19: 4307
    • 9o Ji S, Yan K, Li B, Wang B. Org. Lett. 2018; 20: 5981
    • 9p Dias RM. P, Burtoloso AC. B. Org. Lett. 2016; 18: 3034
    • 9q Gallo R, Ahmad A, Metzker G, Burtoloso A. Chem. Eur. J. 2017; 23: 16980
    • 9r Li C, Li M, Zhong W, Jin Y, Li J, Wu W, Jiang H. Org. Lett. 2019; 21: 872
    • 9s Janot C, Palamini P, Dobson B, Muir J, Aïssa C. Org. Lett. 2019; 21: 296
    • 9t Jia Q, Kong L, Li X. Org. Chem. Front. 2019; 6: 741
    • 9u Chen X, Wang M, Zhang X, Fan X. Org. Lett. 2019; 21: 2541
  • 10 Yuan Y, Wu X.-F. Org. Lett. 2019; 21: 5310
    • 11a Hori M, Kataoka T, Shimizu H, Tomoto A. Tetrahedron Lett. 1981; 22: 3629
    • 11b Kataoka T, Tomoto A, Shimuzu H, Imai E, Hori M. J. Chem. Soc., Perkin Trans. 1 1984; 515
  • 12 General Procedure: Sulfoxonium ylide 1 (0.2 mmol) was added to neat alcohol (0.5 mL) or to alcohol/tBuOH (2:3, 0.5 mL), and the solution was stirred in a 20 mL sealed tube under an atmosphere of air at 120 °C for 40 h. After cooling the mixture to room temperature, the solvent was evaporated under vacuum, and the crude product was purified by column chromatography (silica gel, pentane/EtOAc) to obtain the pure product. Butyl benzoate (2a): 1H NMR (300 MHz, CDCl3): δ = 8.20–7.85 (m, 2 H), 7.54–7.45 (m, 1 H), 7.43–7.32 (m, 2 H), 4.30 (t, J = 6.6 Hz, 2 H), 1.87–1.58 (m, 2 H), 1.58–1.26 (m, 2 H), 0.96 (t, J = 7.4 Hz, 3 H). 13C NMR (75 MHz, CDCl3): δ = 166.5, 132.7, 130.5, 129.5, 128.2, 64.7, 30.8, 19.2, 13.7.
    • 13a Corey EJ, Chaykovsky M. J. Am. Chem. Soc. 1965; 87: 1353
    • 13b Shen Z, Zhang S, Geng H, Wang J, Zhang X, Zhou A, Yao C, Chen X, Wang W. Org. Lett. 2019; 21: 448