Semin Liver Dis 2019; 39(03): 315-333
DOI: 10.1055/s-0039-1685539
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Contributions of Fibroblasts, Extracellular Matrix, Stiffness, and Mechanosensing to Hepatocarcinogenesis

Aveline Filliol
1   Department of Medicine, Columbia University, College of Physicians and Surgeons, New York
,
Robert F. Schwabe
1   Department of Medicine, Columbia University, College of Physicians and Surgeons, New York
2   Institute of Human Nutrition, Columbia University, College of Physicians and Surgeons, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
21 June 2019 (online)

Abstract

Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. A unique feature of liver cancer is its close association with liver fibrosis. About 90% of HCCs develop in advanced liver fibrosis or cirrhosis, suggesting an important role for the fibrotic microenvironment in driving HCC development. Here, the authors will discuss functional contributions of liver fibrosis to the development of HCC, focusing on mechanisms through which fibrosis may promote HCC development such as hepatic stellate cell-derived extracellular matrix, growth factors, and cytokines, stiffness-induced signaling pathways, and immunosuppression. Better understanding of these factors in HCC development and progression may provide the basis for novel stromal-based therapies for tumor prevention or therapy.

 
  • References

  • 1 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65 (02) 87-108
  • 2 Marcellin P, Kutala BK. Liver diseases: a major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int 2018; 38 (Suppl. 01) 2-6
  • 3 El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011; 365 (12) 1118-1127
  • 4 Affo S, Yu LX, Schwabe RF. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu Rev Pathol 2017; 12: 153-186
  • 5 Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer 2016; 16 (09) 582-598
  • 6 Yamauchi M, Barker TH, Gibbons DL, Kurie JM. The fibrotic tumor stroma. J Clin Invest 2018; 128 (01) 16-25
  • 7 Özdemir BC, Pentcheva-Hoang T, Carstens JL. , et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 2015; 28 (06) 831-833
  • 8 Rhim AD, Oberstein PE, Thomas DH. , et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 2014; 25 (06) 735-747
  • 9 Suh B, Park S, Shin DW. , et al. High liver fibrosis index FIB-4 is highly predictive of hepatocellular carcinoma in chronic hepatitis B carriers. Hepatology 2015; 61 (04) 1261-1268
  • 10 Désert R, Mebarki S, Desille M. , et al. “Fibrous nests” in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome. Int J Biochem Cell Biol 2016; 81 (Pt A): 195-207
  • 11 Kim MN, Kim SU, Kim BK. , et al. Increased risk of hepatocellular carcinoma in chronic hepatitis B patients with transient elastography-defined subclinical cirrhosis. Hepatology 2015; 61 (06) 1851-1859
  • 12 Akima T, Tamano M, Hiraishi H. Liver stiffness measured by transient elastography is a predictor of hepatocellular carcinoma development in viral hepatitis. Hepatol Res 2011; 41 (10) 965-970
  • 13 Wang HM, Hung CH, Lu SN. , et al. Liver stiffness measurement as an alternative to fibrotic stage in risk assessment of hepatocellular carcinoma incidence for chronic hepatitis C patients. Liver Int 2013; 33 (05) 756-761
  • 14 Wang Q, Fiel MI, Blank S. , et al. Impact of liver fibrosis on prognosis following liver resection for hepatitis B-associated hepatocellular carcinoma. Br J Cancer 2013; 109 (03) 573-581
  • 15 Ju MJ, Qiu SJ, Fan J. , et al. Peritumoral activated hepatic stellate cells predict poor clinical outcome in hepatocellular carcinoma after curative resection. Am J Clin Pathol 2009; 131 (04) 498-510
  • 16 Ji J, Eggert T, Budhu A. , et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology 2015; 62 (02) 481-495
  • 17 Lau EY, Lo J, Cheng BY. , et al. Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling. Cell Reports 2016; 15 (06) 1175-1189
  • 18 Zhang DY, Goossens N, Guo J. , et al. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut 2016; 65 (10) 1754-1764
  • 19 Lujambio A, Akkari L, Simon J. , et al. Non-cell-autonomous tumor suppression by p53. Cell 2013; 153 (02) 449-460
  • 20 Yoshimoto S, Loo TM, Atarashi K. , et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499 (7456): 97-101
  • 21 Mederacke I, Hsu CC, Troeger JS. , et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823
  • 22 Duran A, Hernandez ED, Reina-Campos M. , et al. p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell 2016; 30 (04) 595-609
  • 23 Grohmann M, Wiede F, Dodd GT. , et al. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC. Cell 2018; 175 (05) 1289.e20-1306.e20
  • 24 Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology 2013; 144 (03) 512-527
  • 25 Prieto J, Melero I, Sangro B. Immunological landscape and immunotherapy of hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2015; 12 (12) 681-700
  • 26 Gandellini P, Andriani F, Merlino G, D'Aiuto F, Roz L, Callari M. Complexity in the tumour microenvironment: cancer associated fibroblast gene expression patterns identify both common and unique features of tumour-stroma crosstalk across cancer types. Semin Cancer Biol 2015; 35: 96-106
  • 27 LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 2018; 11 (04) dmm029447
  • 28 Sukowati CH, Anfuso B, Crocé LS, Tiribelli C. The role of multipotent cancer associated fibroblasts in hepatocarcinogenesis. BMC Cancer 2015; 15: 188
  • 29 Jia CC, Wang TT, Liu W. , et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One 2013; 8 (05) e63243
  • 30 Kang TW, Yevsa T, Woller N. , et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 2011; 479 (7374): 547-551
  • 31 Bocca C, Novo E, Miglietta A, Parola M. Angiogenesis and fibrogenesis in chronic liver diseases. Cell Mol Gastroenterol Hepatol 2015; 1 (05) 477-488
  • 32 De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 2017; 17 (08) 457-474
  • 33 Semela D, Dufour JF. Angiogenesis and hepatocellular carcinoma. J Hepatol 2004; 41 (05) 864-880
  • 34 Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol 2011; 8 (05) 292-301
  • 35 Van de Veire S, Stalmans I, Heindryckx F. , et al. Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell 2010; 141 (01) 178-190
  • 36 Iwaisako K, Jiang C, Zhang M. , et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A 2014; 111 (32) E3297-E3305
  • 37 Xie T, Wang Y, Deng N. , et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Reports 2018; 22 (13) 3625-3640
  • 38 Tabib T, Morse C, Wang T, Chen W, Lafyatis R. SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. J Invest Dermatol 2018; 138 (04) 802-810
  • 39 Mizoguchi F, Slowikowski K, Wei K. , et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat Commun 2018; 9 (01) 789
  • 40 Öhlund D, Handly-Santana A, Biffi G. , et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 2017; 214 (03) 579-596
  • 41 Costa A, Kieffer Y, Scholer-Dahirel A. , et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 2018; 33 (03) 463.e10-479.e10
  • 42 Hynes RO. The extracellular matrix: not just pretty fibrils. Science 2009; 326 (5957): 1216-1219
  • 43 Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics 2012; 11 (04) 014647
  • 44 Lai KK, Shang S, Lohia N. , et al. Extracellular matrix dynamics in hepatocarcinogenesis: a comparative proteomics study of PDGFC transgenic and Pten null mouse models. PLoS Genet 2011; 7 (06) e1002147
  • 45 Faouzi S, Le Bail B, Neaud V. , et al. Myofibroblasts are responsible for collagen synthesis in the stroma of human hepatocellular carcinoma: an in vivo and in vitro study. J Hepatol 1999; 30 (02) 275-284
  • 46 Hayashi M, Nomoto S, Hishida M. , et al. Identification of the collagen type 1 α 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma. BMC Cancer 2014; 14: 108
  • 47 Ooi LP, Crawford DH, Gotley DC. , et al. Evidence that “myofibroblast-like” cells are the cellular source of capsular collagen in hepatocellular carcinoma. J Hepatol 1997; 26 (04) 798-807
  • 48 Yang MC, Wang CJ, Liao PC, Yen CJ, Shan YS. Hepatic stellate cells secretes type I collagen to trigger epithelial mesenchymal transition of hepatoma cells. Am J Cancer Res 2014; 4 (06) 751-763
  • 49 Zhang R, Ma M, Lin XH. , et al. Extracellular matrix collagen I promotes the tumor progression of residual hepatocellular carcinoma after heat treatment. BMC Cancer 2018; 18 (01) 901
  • 50 Ji J, Zhao L, Budhu A. , et al. Let-7g targets collagen type I alpha2 and inhibits cell migration in hepatocellular carcinoma. J Hepatol 2010; 52 (05) 690-697
  • 51 Fang M, Yuan J, Peng C, Li Y. Collagen as a double-edged sword in tumor progression. Tumour Biol 2014; 35 (04) 2871-2882
  • 52 Oskarsson T, Acharyya S, Zhang XH. , et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 2011; 17 (07) 867-874
  • 53 Zhao M, Laissue JA, Zimmermann A. Tenascin and type IV collagen expression in liver cell dysplasia and in hepatocellular carcinoma. Histol Histopathol 1996; 11 (02) 323-333
  • 54 El-Karef A, Kaito M, Tanaka H. , et al. Expression of large tenascin-C splice variants by hepatic stellate cells/myofibroblasts in chronic hepatitis C. J Hepatol 2007; 46 (04) 664-673
  • 55 Nong Y, Wu D, Lin Y, Zhang Y, Bai L, Tang H. Tenascin-C expression is associated with poor prognosis in hepatocellular carcinoma (HCC) patients and the inflammatory cytokine TNF-α-induced TNC expression promotes migration in HCC cells. Am J Cancer Res 2015; 5 (02) 782-791
  • 56 Benbow JH, Thompson KJ, Cope HL. , et al. Diet-induced obesity enhances progression of hepatocellular carcinoma through tenascin-C/toll-like receptor 4 signaling. Am J Pathol 2016; 186 (01) 145-158
  • 57 Zollinger AJ, Smith ML. Fibronectin, the extracellular glue. Matrix Biol 2017; 60-61 27-37
  • 58 Matsui S, Takahashi T, Oyanagi Y. , et al. Expression, localization and alternative splicing pattern of fibronectin messenger RNA in fibrotic human liver and hepatocellular carcinoma. J Hepatol 1997; 27 (05) 843-853
  • 59 Wang JP, Hielscher A. Fibronectin: how its aberrant expression in tumors may improve therapeutic targeting. J Cancer 2017; 8 (04) 674-682
  • 60 Matsuo M, Sakurai H, Ueno Y, Ohtani O, Saiki I. Activation of MEK/ERK and PI3K/Akt pathways by fibronectin requires integrin alphav-mediated ADAM activity in hepatocellular carcinoma: a novel functional target for gefitinib. Cancer Sci 2006; 97 (02) 155-162
  • 61 Fransvea E, Mazzocca A, Antonaci S, Giannelli G. Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology 2009; 49 (03) 839-850
  • 62 Tryggvason K. The laminin family. Curr Opin Cell Biol 1993; 5 (05) 877-882
  • 63 Marinkovich MP. Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat Rev Cancer 2007; 7 (05) 370-380
  • 64 Santamato A, Fransvea E, Dituri F. , et al. Hepatic stellate cells stimulate HCC cell migration via laminin-5 production. Clin Sci (Lond) 2011; 121 (04) 159-168
  • 65 Bergamini C, Sgarra C, Trerotoli P. , et al. Laminin-5 stimulates hepatocellular carcinoma growth through a different function of alpha6beta4 and alpha3beta1 integrins. Hepatology 2007; 46 (06) 1801-1809
  • 66 Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S. Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 2005; 129 (05) 1375-1383
  • 67 Azzariti A, Mancarella S, Porcelli L. , et al. Hepatic stellate cells induce hepatocellular carcinoma cell resistance to sorafenib through the laminin-332/α3 integrin axis recovery of focal adhesion kinase ubiquitination. Hepatology 2016; 64 (06) 2103-2117
  • 68 Giannelli G, Fransvea E, Bergamini C, Marinosci F, Antonaci S. Laminin-5 chains are expressed differentially in metastatic and nonmetastatic hepatocellular carcinoma. Clin Cancer Res 2003; 9 (10, Pt 1): 3684-3691
  • 69 Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD. Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 2002; 62 (18) 5358-5364
  • 70 Baril P, Gangeswaran R, Mahon PC. , et al. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the beta4 integrin and the PI3k pathway. Oncogene 2007; 26 (14) 2082-2094
  • 71 Yan W, Shao R. Transduction of a mesenchyme-specific gene periostin into 293T cells induces cell invasive activity through epithelial-mesenchymal transformation. J Biol Chem 2006; 281 (28) 19700-19708
  • 72 Morra L, Moch H. Periostin expression and epithelial-mesenchymal transition in cancer: a review and an update. Virchows Arch 2011; 459 (05) 465-475
  • 73 Kumar P, Smith T, Raeman R. , et al. Periostin promotes liver fibrogenesis by activating lysyl oxidase in hepatic stellate cells. J Biol Chem 2018; 293 (33) 12781-12792
  • 74 Sugiyama A, Kanno K, Nishimichi N. , et al. Periostin promotes hepatic fibrosis in mice by modulating hepatic stellate cell activation via αv integrin interaction. J Gastroenterol 2016; 51 (12) 1161-1174
  • 75 Lv Y, Wang W, Jia WD. , et al. High-level expression of periostin is closely related to metastatic potential and poor prognosis of hepatocellular carcinoma. Med Oncol 2013; 30 (01) 385
  • 76 Lv Y, Wang W, Jia WD. , et al. High preoparative levels of serum periostin are associated with poor prognosis in patients with hepatocellular carcinoma after hepatectomy. Eur J Surg Oncol 2013; 39 (10) 1129-1135
  • 77 Chen G, Nakamura I, Dhanasekaran R. , et al. Transcriptional induction of periostin by a sulfatase 2-TGFβ1-SMAD signaling axis mediates tumor angiogenesis in hepatocellular carcinoma. Cancer Res 2017; 77 (03) 632-645
  • 78 Zhang R, Yao RR, Li JH. , et al. Activated hepatic stellate cells secrete periostin to induce stem cell-like phenotype of residual hepatocellular carcinoma cells after heat treatment. Sci Rep 2017; 7 (01) 2164
  • 79 Dhar D, Antonucci L, Nakagawa H. , et al. Liver cancer initiation requires p53 inhibition by CD44-enhanced growth factor signaling. Cancer Cell 2018; 33 (06) 1061.e6-1077.e6
  • 80 Okabe H, Ishimoto T, Mima K. , et al. CD44s signals the acquisition of the mesenchymal phenotype required for anchorage-independent cell survival in hepatocellular carcinoma. Br J Cancer 2014; 110 (04) 958-966
  • 81 Mima K, Okabe H, Ishimoto T. , et al. CD44s regulates the TGF-β-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res 2012; 72 (13) 3414-3423
  • 82 Endo K, Terada T. Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J Hepatol 2000; 32 (01) 78-84
  • 83 Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110 (06) 673-687
  • 84 Tucker RP, Chiquet-Ehrismann R. Tenascin-C: its functions as an integrin ligand. Int J Biochem Cell Biol 2015; 65: 165-168
  • 85 Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer 2018; 18 (09) 533-548
  • 86 Begum NA, Mori M, Matsumata T, Takenaka K, Sugimachi K, Barnard GF. Differential display and integrin alpha 6 messenger RNA overexpression in hepatocellular carcinoma. Hepatology 1995; 22 (05) 1447-1455
  • 87 Zheng X, Liu W, Xiang J. , et al. Collagen I promotes hepatocellular carcinoma cell proliferation by regulating integrin β1/FAK signaling pathway in nonalcoholic fatty liver. Oncotarget 2017; 8 (56) 95586-95595
  • 88 Leng C, Zhang ZG, Chen WX. , et al. An integrin beta4-EGFR unit promotes hepatocellular carcinoma lung metastases by enhancing anchorage independence through activation of FAK-AKT pathway. Cancer Lett 2016; 376 (01) 188-196
  • 89 Zhao G, Cui J, Qin Q. , et al. Mechanical stiffness of liver tissues in relation to integrin β1 expression may influence the development of hepatic cirrhosis and hepatocellular carcinoma. J Surg Oncol 2010; 102 (05) 482-489
  • 90 Wong KF, Liu AM, Hong W, Xu Z, Luk JM. Integrin α2β1 inhibits MST1 kinase phosphorylation and activates Yes-associated protein oncogenic signaling in hepatocellular carcinoma. Oncotarget 2016; 7 (47) 77683-77695
  • 91 Lee SK, Kim MH, Cheong JY, Cho SW, Yang SJ, Kwack K. Integrin alpha V polymorphisms and haplotypes in a Korean population are associated with susceptibility to chronic hepatitis and hepatocellular carcinoma. Liver Int 2009; 29 (02) 187-195
  • 92 Wu Y, Zuo J, Ji G. , et al. Proapoptotic function of integrin beta(3) in human hepatocellular carcinoma cells. Clin Cancer Res 2009; 15 (01) 60-69
  • 93 Zhang YL, Xing X, Cai LB. , et al. Integrin α9 suppresses hepatocellular carcinoma metastasis by Rho GTPase signaling. J Immunol Res 2018; 2018: 4602570
  • 94 Bogorad RL, Yin H, Zeigerer A. , et al. Nanoparticle-formulated siRNA targeting integrins inhibits hepatocellular carcinoma progression in mice. Nat Commun 2014; 5: 3869
  • 95 Shrivastava A, Radziejewski C, Campbell E. , et al. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell 1997; 1 (01) 25-34
  • 96 Alves F, Vogel W, Mossie K, Millauer B, Höfler H, Ullrich A. Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene 1995; 10 (03) 609-618
  • 97 Olaso E, Ikeda K, Eng FJ. , et al. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest 2001; 108 (09) 1369-1378
  • 98 Vogel W, Gish GD, Alves F, Pawson T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1997; 1 (01) 13-23
  • 99 Leitinger B, Kwan AP. The discoidin domain receptor DDR2 is a receptor for type X collagen. Matrix Biol 2006; 25 (06) 355-364
  • 100 Rammal H, Saby C, Magnien K. , et al. Discoidin domain receptors: potential actors and targets in cancer. Front Pharmacol 2016; 7: 55
  • 101 Shen Q, Cicinnati VR, Zhang X. , et al. Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol Cancer 2010; 9: 227
  • 102 Jian ZX, Sun J, Chen W, Jin HS, Zheng JH, Wu YL. Involvement of discoidin domain 1 receptor in recurrence of hepatocellular carcinoma by genome-wide analysis. Med Oncol 2012; 29 (05) 3077-3082
  • 103 Ezzoukhry Z, Henriet E, Piquet L. , et al. TGF-β1 promotes linear invadosome formation in hepatocellular carcinoma cells, through DDR1 up-regulation and collagen I cross-linking. Eur J Cell Biol 2016; 95 (11) 503-512
  • 104 Juin A, Di Martino J, Leitinger B. , et al. Discoidin domain receptor 1 controls linear invadosome formation via a Cdc42-Tuba pathway. J Cell Biol 2014; 207 (04) 517-533
  • 105 Takai K, Drain AP, Lawson DA. , et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev 2018; 32 (3–4): 244-257
  • 106 Park JW, Lee YS, Kim JS. , et al. Downregulation of discoidin domain receptor 2 decreases tumor growth of hepatocellular carcinoma. J Cancer Res Clin Oncol 2015; 141 (11) 1973-1983
  • 107 Xie B, Lin W, Ye J. , et al. DDR2 facilitates hepatocellular carcinoma invasion and metastasis via activating ERK signaling and stabilizing SNAIL1. J Exp Clin Cancer Res 2015; 34: 101
  • 108 Grither WR, Longmore GD. Inhibition of tumor-microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. Proc Natl Acad Sci U S A 2018; 115 (33) E7786-E7794
  • 109 Coelho NM, Arora PD, van Putten S. , et al. Discoidin domain receptor 1 mediates myosin-dependent collagen contraction. Cell Reports 2017; 18 (07) 1774-1790
  • 110 Orian-Rousseau V, Sleeman J. CD44 is a multidomain signaling platform that integrates extracellular matrix cues with growth factor and cytokine signals. Adv Cancer Res 2014; 123: 231-254
  • 111 Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4 (01) 33-45
  • 112 Schrader J, Gordon-Walker TT, Aucott RL. , et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology 2011; 53 (04) 1192-1205
  • 113 Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule?. Nat Rev Cancer 2011; 11 (04) 254-267
  • 114 Prochazka L, Tesarik R, Turanek J. Regulation of alternative splicing of CD44 in cancer. Cell Signal 2014; 26 (10) 2234-2239
  • 115 Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med 2015; 4 (09) 1033-1043
  • 116 Gao Y, Ruan B, Liu W. , et al. Knockdown of CD44 inhibits the invasion and metastasis of hepatocellular carcinoma both in vitro and in vivo by reversing epithelial-mesenchymal transition. Oncotarget 2015; 6 (10) 7828-7837
  • 117 Fan Z, Xia H, Xu H. , et al. Standard CD44 modulates YAP1 through a positive feedback loop in hepatocellular carcinoma. Biomed Pharmacother 2018; 103: 147-156
  • 118 Zhang Y, Xia H, Ge X. , et al. CD44 acts through RhoA to regulate YAP signaling. Cell Signal 2014; 26 (11) 2504-2513
  • 119 He X, Liao W, Li Y. , et al. Upregulation of hyaluronan-mediated motility receptor in hepatocellular carcinoma predicts poor survival. Oncol Lett 2015; 10 (06) 3639-3646
  • 120 Zeltz C, Gullberg D. The integrin-collagen connection--a glue for tissue repair?. J Cell Sci 2016; 129 (04) 653-664
  • 121 Huwart L, Peeters F, Sinkus R. , et al. Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed 2006; 19 (02) 173-179
  • 122 Rouvière O, Yin M, Dresner MA. , et al. MR elastography of the liver: preliminary results. Radiology 2006; 240 (02) 440-448
  • 123 Yin M, Woollard J, Wang X. , et al. Quantitative assessment of hepatic fibrosis in an animal model with magnetic resonance elastography. Magn Reson Med 2007; 58 (02) 346-353
  • 124 Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology 2008; 47 (04) 1394-1400
  • 125 DuFort CC, Paszek MJ, Weaver VM. Balancing forces: architectural control of mechanotransduction. Nat Rev Mol Cell Biol 2011; 12 (05) 308-319
  • 126 Fernandez-Sanchez ME, Brunet T, Röper JC, Farge E. Mechanotransduction's impact on animal development, evolution, and tumorigenesis. Annu Rev Cell Dev Biol 2015; 31: 373-397
  • 127 Northey JJ, Przybyla L, Weaver VM. Tissue force programs cell fate and tumor aggression. Cancer Discov 2017; 7 (11) 1224-1237
  • 128 Zhu J, Huang S, Wu G. , et al. Lysyl oxidase is predictive of unfavorable outcomes and essential for regulation of vascular endothelial growth factor in hepatocellular carcinoma. Dig Dis Sci 2015; 60 (10) 3019-3031
  • 129 Wong CC, Tse AP, Huang YP. , et al. Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma. Hepatology 2014; 60 (05) 1645-1658
  • 130 Barry-Hamilton V, Spangler R, Marshall D. , et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 2010; 16 (09) 1009-1017
  • 131 Le QT, Harris J, Magliocco AM. , et al. Validation of lysyl oxidase as a prognostic marker for metastasis and survival in head and neck squamous cell carcinoma: Radiation Therapy Oncology Group trial 90-03. J Clin Oncol 2009; 27 (26) 4281-4286
  • 132 Barker HE, Chang J, Cox TR. , et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res 2011; 71 (05) 1561-1572
  • 133 Wang M, Zhao X, Zhu D. , et al. HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment. J Exp Clin Cancer Res 2017; 36 (01) 60
  • 134 Wu S, Zheng Q, Xing X. , et al. Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation. J Exp Clin Cancer Res 2018; 37 (01) 99
  • 135 Levental KR, Yu H, Kass L. , et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009; 139 (05) 891-906
  • 136 Harrison SA, Abdelmalek MF, Caldwell S. , et al; GS-US-321-0105 and GS-US-321-0106 Investigators. Simtuzumab is ineffective for patients with bridging fibrosis or compensated cirrhosis caused by nonalcoholic steatohepatitis. Gastroenterology 2018; 155 (04) 1140-1153
  • 137 Yin M, Talwalkar JA, Glaser KJ. , et al. Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastroenterol Hepatol 2007; 5 (10) 1207.e2-1213.e2
  • 138 Georges PC, Hui JJ, Gombos Z. , et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol 2007; 293 (06) G1147-G1154
  • 139 Broders-Bondon F, Nguyen Ho-Bouldoires TH, Fernandez-Sanchez ME, Farge E. Mechanotransduction in tumor progression: the dark side of the force. J Cell Biol 2018; 217 (05) 1571-1587
  • 140 Tschumperlin DJ, Ligresti G, Hilscher MB, Shah VH. Mechanosensing and fibrosis. J Clin Invest 2018; 128 (01) 74-84
  • 141 You Y, Zheng Q, Dong Y. , et al. Matrix stiffness-mediated effects on stemness characteristics occurring in HCC cells. Oncotarget 2016; 7 (22) 32221-32231
  • 142 You Y, Zheng Q, Dong Y. , et al. Higher matrix stiffness upregulates osteopontin expression in hepatocellular carcinoma cells mediated by integrin β1/GSK3β/β-catenin signaling pathway. PLoS One 2015; 10 (08) e0134243
  • 143 Coelho NM, McCulloch CA. Mechanical signaling through the discoidin domain receptor 1 plays a central role in tissue fibrosis. Cell Adhes Migr 2018; 12 (04) 348-362
  • 144 Matthews BD, Overby DR, Mannix R, Ingber DE. Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 2006; 119 (Pt 3): 508-518
  • 145 Guilluy C, Swaminathan V, Garcia-Mata R, O'Brien ET, Superfine R, Burridge K. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat Cell Biol 2011; 13 (06) 722-727
  • 146 Mitra SK, Hanson DA, Schlaepfer DD. Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 2005; 6 (01) 56-68
  • 147 Sun Z, Guo SS, Fässler R. Integrin-mediated mechanotransduction. J Cell Biol 2016; 215 (04) 445-456
  • 148 Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006; 18 (05) 516-523
  • 149 Chen JS, Huang XH, Wang Q. , et al. FAK is involved in invasion and metastasis of hepatocellular carcinoma. Clin Exp Metastasis 2010; 27 (02) 71-82
  • 150 Kan Z, Zheng H, Liu X. , et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res 2013; 23 (09) 1422-1433
  • 151 Okamoto H, Yasui K, Zhao C, Arii S, Inazawa J. PTK2 and EIF3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepatocellular carcinomas. Hepatology 2003; 38 (05) 1242-1249
  • 152 Shang N, Arteaga M, Zaidi A. , et al. FAK is required for c-Met/β-catenin-driven hepatocarcinogenesis. Hepatology 2015; 61 (01) 214-226
  • 153 Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer 2014; 14 (09) 598-610
  • 154 Matthews BD, Thodeti CK, Tytell JD, Mammoto A, Overby DR, Ingber DE. Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr Biol 2010; 2 (09) 435-442
  • 155 Sokabe M, Naruse K, Sai S. , et al. Mechanotransduction and intracellular signaling mechanisms of stretch-induced remodeling in endothelial cells. Heart Vessels 1997; 12 (Suppl. 12) 191-193
  • 156 Tátrai P, Dudás J, Batmunkh E. , et al. Agrin, a novel basement membrane component in human and rat liver, accumulates in cirrhosis and hepatocellular carcinoma. Lab Invest 2006; 86 (11) 1149-1160
  • 157 Lv X, Fang C, Yin R. , et al. Agrin para-secreted by PDGF-activated human hepatic stellate cells promotes hepatocarcinogenesis in vitro and in vivo . Oncotarget 2017; 8 (62) 105340-105355
  • 158 Chakraborty S, Lakshmanan M, Swa HL. , et al. An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma. Nat Commun 2015; 6: 6184
  • 159 Chakraborty S, Njah K, Pobbati AV. , et al. Agrin as a mechanotransduction signal regulating YAP through the Hippo pathway. Cell Reports 2017; 18 (10) 2464-2479
  • 160 Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the roots of cancer. Cancer Cell 2016; 29 (06) 783-803
  • 161 Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol 2017; 18 (12) 758-770
  • 162 Dupont S, Morsut L, Aragona M. , et al. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474 (7350): 179-183
  • 163 Wada K, Itoga K, Okano T, Yonemura S, Sasaki H. Hippo pathway regulation by cell morphology and stress fibers. Development 2011; 138 (18) 3907-3914
  • 164 Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ: Hippo signaling and beyond. Physiol Rev 2014; 94 (04) 1287-1312
  • 165 Dong J, Feldmann G, Huang J. , et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 2007; 130 (06) 1120-1133
  • 166 Xiao H, Jiang N, Zhou B, Liu Q, Du C. TAZ regulates cell proliferation and epithelial-mesenchymal transition of human hepatocellular carcinoma. Cancer Sci 2015; 106 (02) 151-159
  • 167 Guo Y, Pan Q, Zhang J. , et al. Functional and clinical evidence that TAZ is a candidate oncogene in hepatocellular carcinoma. J Cell Biochem 2015; 116 (11) 2465-2475
  • 168 Xu MZ, Yao TJ, Lee NP. , et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer 2009; 115 (19) 4576-4585
  • 169 Zender L, Spector MS, Xue W. , et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 2006; 125 (07) 1253-1267
  • 170 Zhou D, Conrad C, Xia F. , et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 2009; 16 (05) 425-438
  • 171 Kim W, Khan SK, Liu Y. , et al. Hepatic Hippo signaling inhibits protumoural microenvironment to suppress hepatocellular carcinoma. Gut 2018; 67 (09) 1692-1703
  • 172 Hagenbeek TJ, Webster JD, Kljavin NM. , et al. The Hippo pathway effector TAZ induces TEAD-dependent liver inflammation and tumors. Sci Signal 2018; 11 (547) eaaj1757
  • 173 Esnault C, Stewart A, Gualdrini F. , et al. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 2014; 28 (09) 943-958
  • 174 Park MY, Kim KR, Park HS. , et al. Expression of the serum response factor in hepatocellular carcinoma: implications for epithelial-mesenchymal transition. Int J Oncol 2007; 31 (06) 1309-1315
  • 175 Ohrnberger S, Thavamani A, Braeuning A. , et al. Dysregulated serum response factor triggers formation of hepatocellular carcinoma. Hepatology 2015; 61 (03) 979-989
  • 176 Muehlich S, Hampl V, Khalid S. , et al. The transcriptional coactivators megakaryoblastic leukemia 1/2 mediate the effects of loss of the tumor suppressor deleted in liver cancer 1. Oncogene 2012; 31 (35) 3913-3923
  • 177 Hampl V, Martin C, Aigner A. , et al. Depletion of the transcriptional coactivators megakaryoblastic leukaemia 1 and 2 abolishes hepatocellular carcinoma xenograft growth by inducing oncogene-induced senescence. EMBO Mol Med 2013; 5 (09) 1367-1382
  • 178 Kwon CY, Kim KR, Choi HN. , et al. The role of serum response factor in hepatocellular carcinoma: implications for disease progression. Int J Oncol 2010; 37 (04) 837-844
  • 179 Mikula M, Proell V, Fischer AN, Mikulits W. Activated hepatic stellate cells induce tumor progression of neoplastic hepatocytes in a TGF-beta dependent fashion. J Cell Physiol 2006; 209 (02) 560-567
  • 180 Amann T, Bataille F, Spruss T. , et al. Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma. Cancer Sci 2009; 100 (04) 646-653
  • 181 Shimizu S, Yamada N, Sawada T. , et al. In vivo and in vitro interactions between human colon carcinoma cells and hepatic stellate cells. Jpn J Cancer Res 2000; 91 (12) 1285-1295
  • 182 Song J, Ge Z, Yang X. , et al. Hepatic stellate cells activated by acidic tumor microenvironment promote the metastasis of hepatocellular carcinoma via osteopontin. Cancer Lett 2015; 356 (2, Pt B): 713-720
  • 183 Neaud V, Faouzi S, Guirouilh J. , et al. Human hepatic myofibroblasts increase invasiveness of hepatocellular carcinoma cells: evidence for a role of hepatocyte growth factor. Hepatology 1997; 26 (06) 1458-1466
  • 184 Ljubimova JY, Petrovic LM, Wilson SE, Geller SA, Demetriou AA. Expression of HGF, its receptor c-met, c-myc, and albumin in cirrhotic and neoplastic human liver tissue. J Histochem Cytochem 1997; 45 (01) 79-87
  • 185 Goyal L, Muzumdar MD, Zhu AX. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res 2013; 19 (09) 2310-2318
  • 186 Rhee H, Kim HY, Choi JH. , et al. Keratin 19 expression in hepatocellular carcinoma is regulated by fibroblast-derived HGF via a MET-ERK1/2-AP1 and SP1 axis. Cancer Res 2018; 78 (07) 1619-1631
  • 187 Dapito DH, Mencin A, Gwak GY. , et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 2012; 21 (04) 504-516
  • 188 Zhao M, He HW, Sun HX, Ren KH, Shao RG. Dual knockdown of N-ras and epiregulin synergistically suppressed the growth of human hepatoma cells. Biochem Biophys Res Commun 2009; 387 (02) 239-244
  • 189 Abou-Shady M, Baer HU, Friess H. , et al. Transforming growth factor betas and their signaling receptors in human hepatocellular carcinoma. Am J Surg 1999; 177 (03) 209-215
  • 190 Hoshida Y, Nijman SM, Kobayashi M. , et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009; 69 (18) 7385-7392
  • 191 Massagué J. TGFbeta in cancer. Cell 2008; 134 (02) 215-230
  • 192 Bertran E, Crosas-Molist E, Sancho P. , et al. Overactivation of the TGF-β pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells. Hepatology 2013; 58 (06) 2032-2044
  • 193 Fabregat I, Moreno-Càceres J, Sánchez A. , et al; IT-LIVER Consortium. TGF-β signalling and liver disease. FEBS J 2016; 283 (12) 2219-2232
  • 194 Malfettone A, Soukupova J, Bertran E. , et al. Transforming growth factor-β-induced plasticity causes a migratory stemness phenotype in hepatocellular carcinoma. Cancer Lett 2017; 392: 39-50
  • 195 Xiong S, Wang R, Chen Q. , et al. Cancer-associated fibroblasts promote stem cell-like properties of hepatocellular carcinoma cells through IL-6/STAT3/Notch signaling. Am J Cancer Res 2018; 8 (02) 302-316
  • 196 Jang JW, Oh BS, Kwon JH. , et al. Serum interleukin-6 and C-reactive protein as a prognostic indicator in hepatocellular carcinoma. Cytokine 2012; 60 (03) 686-693
  • 197 Shao YY, Lin H, Li YS. , et al. High plasma interleukin-6 levels associated with poor prognosis of patients with advanced hepatocellular carcinoma. Jpn J Clin Oncol 2017; 47 (10) 949-953
  • 198 Naugler WE, Sakurai T, Kim S. , et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 2007; 317 (5834): 121-124
  • 199 He G, Dhar D, Nakagawa H. , et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 2013; 155 (02) 384-396
  • 200 Kawashima R, Mochida S, Matsui A. , et al. Expression of osteopontin in Kupffer cells and hepatic macrophages and Stellate cells in rat liver after carbon tetrachloride intoxication: a possible factor for macrophage migration into hepatic necrotic areas. Biochem Biophys Res Commun 1999; 256 (03) 527-531
  • 201 Lorena D, Darby IA, Gadeau AP. , et al. Osteopontin expression in normal and fibrotic liver. altered liver healing in osteopontin-deficient mice. J Hepatol 2006; 44 (02) 383-390
  • 202 Wen Y, Jeong S, Xia Q, Kong X. Role of osteopontin in liver diseases. Int J Biol Sci 2016; 12 (09) 1121-1128
  • 203 Xie H, Song J, Du R. , et al. Prognostic significance of osteopontin in hepatitis B virus-related hepatocellular carcinoma. Dig Liver Dis 2007; 39 (02) 167-172
  • 204 Gotoh M, Sakamoto M, Kanetaka K, Chuuma M, Hirohashi S. Overexpression of osteopontin in hepatocellular carcinoma. Pathol Int 2002; 52 (01) 19-24
  • 205 Shang S, Plymoth A, Ge S. , et al. Identification of osteopontin as a novel marker for early hepatocellular carcinoma. Hepatology 2012; 55 (02) 483-490
  • 206 Zhang CH, Xu GL, Jia WD. , et al. Prognostic significance of osteopontin in hepatocellular carcinoma: a meta-analysis. Int J Cancer 2012; 130 (11) 2685-2692
  • 207 Platzer G, Schedlbauer A, Chemelli A. , et al. The metastasis-associated extracellular matrix protein osteopontin forms transient structure in ligand interaction sites. Biochemistry 2011; 50 (27) 6113-6124
  • 208 Sharif SA, Du X, Myles T. , et al. Thrombin-activatable carboxypeptidase B cleavage of osteopontin regulates neutrophil survival and synoviocyte binding in rheumatoid arthritis. Arthritis Rheum 2009; 60 (10) 2902-2912
  • 209 Yoo BK, Gredler R, Chen D, Santhekadur PK, Fisher PB, Sarkar D. c-Met activation through a novel pathway involving osteopontin mediates oncogenesis by the transcription factor LSF. J Hepatol 2011; 55 (06) 1317-1324
  • 210 Lee SH, Park JW, Woo SH. , et al. Suppression of osteopontin inhibits chemically induced hepatic carcinogenesis by induction of apoptosis in mice. Oncotarget 2016; 7 (52) 87219-87231
  • 211 Medico E, Gentile A, Lo Celso C. , et al. Osteopontin is an autocrine mediator of hepatocyte growth factor-induced invasive growth. Cancer Res 2001; 61 (15) 5861-5868
  • 212 Leung TM, Wang X, Kitamura N, Fiel MI, Nieto N. Osteopontin delays resolution of liver fibrosis. Lab Invest 2013; 93 (10) 1082-1089
  • 213 Lee SH, Seo GS, Park YN, Yoo TM, Sohn DH. Effects and regulation of osteopontin in rat hepatic stellate cells. Biochem Pharmacol 2004; 68 (12) 2367-2378
  • 214 Urtasun R, Lopategi A, George J. , et al. Osteopontin, an oxidant stress sensitive cytokine, up-regulates collagen-I via integrin α(V)β(3) engagement and PI3K/pAkt/NFκB signaling. Hepatology 2012; 55 (02) 594-608
  • 215 He CY, Liang BB, Fan XY. , et al. The dual role of osteopontin in acetaminophen hepatotoxicity. Acta Pharmacol Sin 2012; 33 (08) 1004-1012
  • 216 Zhao J, Dong L, Lu B. , et al. Down-regulation of osteopontin suppresses growth and metastasis of hepatocellular carcinoma via induction of apoptosis. Gastroenterology 2008; 135 (03) 956-968
  • 217 Sun BS, Dong QZ, Ye QH. , et al. Lentiviral-mediated miRNA against osteopontin suppresses tumor growth and metastasis of human hepatocellular carcinoma. Hepatology 2008; 48 (06) 1834-1842
  • 218 Phillips RJ, Helbig KJ, Van der Hoek KH, Seth D, Beard MR. Osteopontin increases hepatocellular carcinoma cell growth in a CD44 dependant manner. World J Gastroenterol 2012; 18 (26) 3389-3399
  • 219 Iqbal J, McRae S, Banaudha K, Mai T, Waris G. Mechanism of hepatitis C virus (HCV)-induced osteopontin and its role in epithelial to mesenchymal transition of hepatocytes. J Biol Chem 2013; 288 (52) 36994-37009
  • 220 Dong Q, Zhu X, Dai C. , et al. Osteopontin promotes epithelial-mesenchymal transition of hepatocellular carcinoma through regulating vimentin. Oncotarget 2016; 7 (11) 12997-13012
  • 221 Sprinzl MF, Galle PR. Immune control in hepatocellular carcinoma development and progression: role of stromal cells. Semin Liver Dis 2014; 34 (04) 376-388
  • 222 Winau F, Hegasy G, Weiskirchen R. , et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 2007; 26 (01) 117-129
  • 223 Dunham RM, Thapa M, Velazquez VM. , et al. Hepatic stellate cells preferentially induce Foxp3+ regulatory T cells by production of retinoic acid. J Immunol 2013; 190 (05) 2009-2016
  • 224 Calon A, Espinet E, Palomo-Ponce S. , et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 2012; 22 (05) 571-584
  • 225 Fabregat I, Caballero-Díaz D. transforming growth factor-β-induced cell plasticity in liver fibrosis and hepatocarcinogenesis. Front Oncol 2018; 8: 357
  • 226 Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 2010; 10 (08) 554-567
  • 227 Seoane J, Gomis RR. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb Perspect Biol 2017; 9 (12) a022277
  • 228 Tauriello DVF, Palomo-Ponce S, Stork D. , et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018; 554 (7693): 538-543
  • 229 Mariathasan S, Turley SJ, Nickles D. , et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018; 554 (7693): 544-548
  • 230 Li T, Yang Y, Hua X. , et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett 2012; 318 (02) 154-161
  • 231 Shi J, Zhao J, Zhang X. , et al. Activated hepatic stellate cells impair NK cell anti-fibrosis capacity through a TGF-β-dependent emperipolesis in HBV cirrhotic patients. Sci Rep 2017; 7: 44544
  • 232 Yu MC, Chen CH, Liang X. , et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology 2004; 40 (06) 1312-1321
  • 233 Zhao W, Su W, Kuang P. , et al. The role of hepatic stellate cells in the regulation of T-cell function and the promotion of hepatocellular carcinoma. Int J Oncol 2012; 41 (02) 457-464
  • 234 Xia Y, Chen R, Ye SL, Sun R, Chen J, Zhao Y. Inhibition of T-cell responses by intratumoral hepatic stellate cells contribute to migration and invasion of hepatocellular carcinoma. Clin Exp Metastasis 2011; 28 (07) 661-674
  • 235 Xia YH, Wang ZM, Chen RX. , et al. T-cell apoptosis induced by intratumoral activated hepatic stellate cells is associated with lung metastasis in hepatocellular carcinoma. Oncol Rep 2013; 30 (03) 1175-1184
  • 236 Dangi A, Sumpter TL, Kimura S. , et al. Selective expansion of allogeneic regulatory T cells by hepatic stellate cells: role of endotoxin and implications for allograft tolerance. J Immunol 2012; 188 (08) 3667-3677
  • 237 Zhao W, Zhang L, Yin Z. , et al. Activated hepatic stellate cells promote hepatocellular carcinoma development in immunocompetent mice. Int J Cancer 2011; 129 (11) 2651-2661
  • 238 Cheng Y, Li H, Deng Y. , et al. Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma. Cell Death Dis 2018; 9 (04) 422
  • 239 Katz JB, Muller AJ, Prendergast GC. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol Rev 2008; 222: 206-221
  • 240 Becker JC, Andersen MH, Schrama D, Thor Straten P. Immune-suppressive properties of the tumor microenvironment. Cancer Immunol Immunother 2013; 62 (07) 1137-1148
  • 241 Kang N, Gores GJ, Shah VH. Hepatic stellate cells: partners in crime for liver metastases?. Hepatology 2011; 54 (02) 707-713
  • 242 Kaplan G. In vitro differentiation of human monocytes. Monocytes cultured on glass are cytotoxic to tumor cells but monocytes cultured on collagen are not. J Exp Med 1983; 157 (06) 2061-2072
  • 243 Meyaard L. The inhibitory collagen receptor LAIR-1 (CD305). J Leukoc Biol 2008; 83 (04) 799-803
  • 244 Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology 2015; 61 (03) 1066-1079
  • 245 Thabut D, Routray C, Lomberk G. , et al. Complementary vascular and matrix regulatory pathways underlie the beneficial mechanism of action of sorafenib in liver fibrosis. Hepatology 2011; 54 (02) 573-585
  • 246 Abou-Alfa GK, Venook AP. The antiangiogenic ceiling in hepatocellular carcinoma: does it exist and has it been reached?. Lancet Oncol 2013; 14 (07) e283-e288
  • 247 Ehling J, Bartneck M, Wei X. , et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 2014; 63 (12) 1960-1971
  • 248 DeLeve LD. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 2015; 61 (05) 1740-1746
  • 249 Lefere S, Van de Velde F, Hoorens A. , et al. Angiopoietin-2 promotes pathological angiogenesis and is a novel therapeutic target in murine non-alcoholic fatty liver disease. Hepatology 2018 (e-pub ahead of print). doi:10.1002/hep.30294
  • 250 Taura K, De Minicis S, Seki E. , et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 2008; 135 (05) 1729-1738
  • 251 Liu L, You Z, Yu H. , et al. Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. Nat Mater 2017; 16 (12) 1252-1261
  • 252 Lorenz L, Axnick J, Buschmann T. , et al. Mechanosensing by β1 integrin induces angiocrine signals for liver growth and survival. Nature 2018; 562 (7725): 128-132
  • 253 Zanotelli MR, Reinhart-King CA. Mechanical forces in tumor angiogenesis. Adv Exp Med Biol 2018; 1092: 91-112
  • 254 Ritzenthaler JD, Han S, Roman J. Stimulation of lung carcinoma cell growth by fibronectin-integrin signalling. Mol Biosyst 2008; 4 (12) 1160-1169
  • 255 Giordano S, Columbano A. Met as a therapeutic target in HCC: facts and hopes. J Hepatol 2014; 60 (02) 442-452
  • 256 Zhang SZ, Pan FY, Xu JF. , et al. Knockdown of c-Met by adenovirus-delivered small interfering RNA inhibits hepatocellular carcinoma growth in vitro and in vivo. Mol Cancer Ther 2005; 4 (10) 1577-1584
  • 257 Salvi A, Arici B, Portolani N, Giulini SM, De Petro G, Barlati S. In vitro c-met inhibition by antisense RNA and plasmid-based RNAi down-modulates migration and invasion of hepatocellular carcinoma cells. Int J Oncol 2007; 31 (02) 451-460
  • 258 Fajardo-Puerta AB, Mato Prado M, Frampton AE, Jiao LR. Gene of the month: HGF. J Clin Pathol 2016; 69 (07) 575-579
  • 259 Komurasaki T, Toyoda H, Uchida D, Morimoto S. Epiregulin binds to epidermal growth factor receptor and ErbB-4 and induces tyrosine phosphorylation of epidermal growth factor receptor, ErbB-2, ErbB-3 and ErbB-4. Oncogene 1997; 15 (23) 2841-2848
  • 260 Riese II DJ, Cullum RL. Epiregulin: roles in normal physiology and cancer. Semin Cell Dev Biol 2014; 28: 49-56
  • 261 Toyoda H, Komurasaki T, Uchida D. , et al. Epiregulin. A novel epidermal growth factor with mitogenic activity for rat primary hepatocytes. J Biol Chem 1995; 270 (13) 7495-7500
  • 262 Hunter CA, Jones SA. IL-6 as a keystone cytokine in health and disease. Nat Immunol 2015; 16 (05) 448-457
  • 263 Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425 (6958): 577-584
  • 264 Wang KX, Denhardt DT. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 2008; 19 (5–6): 333-345
  • 265 Shevde LA, Samant RS. Role of osteopontin in the pathophysiology of cancer. Matrix Biol 2014; 37: 131-141