Digestive Disease Interventions 2019; 03(02): 155-162
DOI: 10.1055/s-0039-1679936
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Interventional Oncology in Immuno-Oncology Part 2: Transcatheter Therapies

Meaghan Dendy Case
1   Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
,
Ryan Slovak
1   Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
2   University of Connecticut School of Medicine, Farmington, Connecticut
,
Junaid Raja
1   Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
,
Hyun S. Kim
1   Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
3   Division of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
4   Yale Cancer Center, Yale School of Medicine, New Haven, New Haven, Connecticut
› Author Affiliations
Acknowledgments and Funding HSK is supported by the United States Department of Defense (CA160741).
Further Information

Publication History

17 December 2018

23 December 2018

Publication Date:
20 March 2019 (online)

Abstract

The use of transcatheter embolization in its various forms in interventional oncology has altered the treatment paradigms for multiple types of cancer. Though direct investigation of the immunologic effects of transcatheter treatments has been limited, research on radiation therapy can be extrapolated to better understand the potential effects of radioembolization and studies on the immune response to chemotherapy can potentially explain the immune response to hepatic artery infusion and chemoembolization. Utilization of newer systemic immunotherapies in combination with various transcatheter therapies also presents the potential for improving outcomes for multiple malignancies. This review will discuss the role of transcatheter therapies in stimulating an immune response as well as the potential these techniques have to enhance the effects of systemic immunotherapy.

 
  • References

  • 1 Lewandowski RJ, Geschwind JF, Liapi E, Salem R. Transcatheter intraarterial therapies: rationale and overview. Radiology 2011; 259 (03) 641-657
  • 2 Mole RH. Whole body irradiation; radiobiology or medicine?. Br J Radiol 1953; 26 (305) 234-241
  • 3 Andrews JR. Radiobiology of Human Cancer Radiotherapy. Baltimore, MD: University Park Press; 1978
  • 4 Markowitz J. The hepatic artery. Surg Gynecol Obstet 1952; 95 (05) 644-646
  • 5 Doyon D, Mouzon A, Jourde AM, Regensberg C, Frileux C. [Hepatic, arterial embolization in patients with malignant liver tumours (author's transl)]. Ann Radiol (Paris) 1974; 17 (06) 593-603
  • 6 Ayaru L, Pereira SP, Alisa A. , et al. Unmasking of α-fetoprotein-specific CD4(+) T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol 2007; 178 (03) 1914-1922
  • 7 Takaki H, Imai N, Contessa TT. , et al. Peripheral blood regulatory T-cell and type 1 helper T-cell population decrease after hepatic artery embolization. J Vasc Interv Radiol 2016; 27 (10) 1561-1568
  • 8 Sugiyama D, Nishikawa H, Maeda Y. , et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci U S A 2013; 110 (44) 17945-17950
  • 9 Rech AJ, Mick R, Martin S. , et al. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci Transl Med 2012; 4 (134) 134ra62
  • 10 Kim KW, Bae SK, Lee OH, Bae MH, Lee MJ, Park BC. Insulin-like growth factor II induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinoma. Cancer Res 1998; 58 (02) 348-351
  • 11 Wu XZ, Xie GR, Chen D. Hypoxia and hepatocellular carcinoma: the therapeutic target for hepatocellular carcinoma. J Gastroenterol Hepatol 2007; 22 (08) 1178-1182
  • 12 Collins JM. Pharmacologic rationale for regional drug delivery. J Clin Oncol 1984; 2 (05) 498-504
  • 13 Deschamps F, Rao P, Teriitehau C. , et al. Percutaneous femoral implantation of an arterial port catheter for intraarterial chemotherapy: feasibility and predictive factors of long-term functionality. J Vasc Interv Radiol 2010; 21 (11) 1681-1688
  • 14 Hohn DC, Stagg RJ, Friedman MA. , et al. A randomized trial of continuous intravenous versus hepatic intraarterial floxuridine in patients with colorectal cancer metastatic to the liver: the Northern California Oncology Group trial. J Clin Oncol 1989; 7 (11) 1646-1654
  • 15 Chang AE, Schneider PD, Sugarbaker PH, Simpson C, Culnane M, Steinberg SM. A prospective randomized trial of regional versus systemic continuous 5-fluorodeoxyuridine chemotherapy in the treatment of colorectal liver metastases. Ann Surg 1987; 206 (06) 685-693
  • 16 Kemeny NE, Niedzwiecki D, Hollis DR. , et al. Hepatic arterial infusion versus systemic therapy for hepatic metastases from colorectal cancer: a randomized trial of efficacy, quality of life, and molecular markers (CALGB 9481). J Clin Oncol 2006; 24 (09) 1395-1403
  • 17 Brown DB, Gould JE, Gervais DA. , et al. Transcatheter therapy for hepatic malignancy: standardization of terminology and reporting criteria. J Vasc Interv Radiol 2007; 18 (12) 1469-1478
  • 18 Kruskal JB, Hlatky L, Hahnfeldt P, Teramoto K, Stokes KR, Clouse ME. In vivo and in vitro analysis of the effectiveness of doxorubicin combined with temporary arterial occlusion in liver tumors. J Vasc Interv Radiol 1993; 4 (06) 741-747
  • 19 Bhattacharya S, Dhillon AP, Winslet MC. , et al. Human liver cancer cells and endothelial cells incorporate iodised oil. Br J Cancer 1996; 73 (07) 877-881
  • 20 Lo CM, Ngan H, Tso WK. , et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 2002; 35 (05) 1164-1171
  • 21 Llovet JM, Real MI, Montaña X. , et al; Barcelona Liver Cancer Group. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 2002; 359 (9319): 1734-1739
  • 22 Tellez C, Benson III AB, Lyster MT. , et al. Phase II trial of chemoembolization for the treatment of metastatic colorectal carcinoma to the liver and review of the literature. Cancer 1998; 82 (07) 1250-1259
  • 23 Pelletier G, Roche A, Ink O. , et al. A randomized trial of hepatic arterial chemoembolization in patients with unresectable hepatocellular carcinoma. J Hepatol 1990; 11 (02) 181-184
  • 24 Giroux MF, Baum RA, Soulen MC. Chemoembolization of liver metastasis from breast carcinoma. J Vasc Interv Radiol 2004; 15 (03) 289-291
  • 25 Burger I, Hong K, Schulick R. , et al. Transcatheter arterial chemoembolization in unresectable cholangiocarcinoma: initial experience in a single institution. J Vasc Interv Radiol 2005; 16 (03) 353-361
  • 26 Guan HT, Wang J, Yang M, Song L, Tong XQ, Zou YH. Changes in immunological function after treatment with transarterial chemoembolization plus radiofrequency ablation in hepatocellular carcinoma patients. Chin Med J (Engl) 2013; 126 (19) 3651-3655
  • 27 Kohles N, Nagel D, Jüngst D, Stieber P, Holdenrieder S. Predictive value of immunogenic cell death biomarkers HMGB1, sRAGE, and DNase in liver cancer patients receiving transarterial chemoembolization therapy. Tumour Biol 2012; 33 (06) 2401-2409
  • 28 Hong K, Khwaja A, Liapi E, Torbenson MS, Georgiades CS, Geschwind JF. New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer. Clin Cancer Res 2006; 12 (08) 2563-2567
  • 29 Malagari K, Alexopoulou E, Chatzimichail K. , et al. Transcatheter chemoembolization in the treatment of HCC in patients not eligible for curative treatments: midterm results of doxorubicin-loaded DC bead. Abdom Imaging 2008; 33 (05) 512-519
  • 30 Reyes DK, Vossen JA, Kamel IR. , et al. Single-center phase II trial of transarterial chemoembolization with drug-eluting beads for patients with unresectable hepatocellular carcinoma: initial experience in the United States. Cancer J 2009; 15 (06) 526-532
  • 31 Martin RC, Joshi J, Robbins K. , et al. Hepatic intra-arterial injection of drug-eluting bead, irinotecan (DEBIRI) in unresectable colorectal liver metastases refractory to systemic chemotherapy: results of multi-institutional study. Ann Surg Oncol 2011; 18 (01) 192-198
  • 32 Ingold JA, Reed GB, Kaplan HS, Bagshaw MA. Radiation hepatitis. Am J Roentgenol Radium Ther Nucl Med 1965; 93: 200-208
  • 33 Yorke ED, Jackson A, Fox RA, Wessels BW, Gray BN. Can current models explain the lack of liver complications in Y-90 microsphere therapy?. Clin Cancer Res 1999; 5 (10, Suppl) 3024s-3030s
  • 34 Kulik LM, Atassi B, van Holsbeeck L. , et al. Yttrium-90 microspheres (TheraSphere) treatment of unresectable hepatocellular carcinoma: downstaging to resection, RFA and bridge to transplantation. J Surg Oncol 2006; 94 (07) 572-586
  • 35 Salem R, Lewandowski RJ, Atassi B. , et al. Treatment of unresectable hepatocellular carcinoma with use of 90Y microspheres (TheraSphere): safety, tumor response, and survival. J Vasc Interv Radiol 2005; 16 (12) 1627-1639
  • 36 Kulik LM, Carr BI, Mulcahy MF. , et al. Safety and efficacy of 90Y radiotherapy for hepatocellular carcinoma with and without portal vein thrombosis. Hepatology 2008; 47 (01) 71-81
  • 37 Gray B, Van Hazel G, Hope M. , et al. Randomised trial of SIR-Spheres plus chemotherapy vs. chemotherapy alone for treating patients with liver metastases from primary large bowel cancer. Ann Oncol 2001; 12 (12) 1711-1720
  • 38 Van Hazel G, Blackwell A, Anderson J. , et al. Randomised phase 2 trial of SIR-Spheres plus fluorouracil/leucovorin chemotherapy versus fluorouracil/leucovorin chemotherapy alone in advanced colorectal cancer. J Surg Oncol 2004; 88 (02) 78-85
  • 39 Kennedy AS, Coldwell D, Nutting C. , et al. Resin 90Y-microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int J Radiat Oncol Biol Phys 2006; 65 (02) 412-425
  • 40 Sato KT, Lewandowski RJ, Mulcahy MF. , et al. Unresectable chemorefractory liver metastases: radioembolization with 90Y microspheres--safety, efficacy, and survival. Radiology 2008; 247 (02) 507-515
  • 41 Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39 (01) 74-88
  • 42 Hickey RM, Kulik LM, Nimeiri H. , et al. Immuno-oncology and its opportunities for interventional radiologists: immune checkpoint inhibition and potential synergies with interventional oncology procedures. J Vasc Interv Radiol 2017; 28 (11) 1487-1494
  • 43 Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 2015; 15 (07) 409-425
  • 44 Klug F, Prakash H, Huber PE. , et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 2013; 24 (05) 589-602
  • 45 Reits EA, Hodge JW, Herberts CA. , et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 2006; 203 (05) 1259-1271
  • 46 Tesniere A, Panaretakis T, Kepp O. , et al. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 2008; 15 (01) 3-12
  • 47 Frey B, Rubner Y, Wunderlich R. , et al. Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation - implications for cancer therapies. Curr Med Chem 2012; 19 (12) 1751-1764
  • 48 Chiriva-Internati M, Grizzi F, Pinkston J. , et al. Gamma-radiation upregulates MHC class I/II and ICAM-I molecules in multiple myeloma cell lines and primary tumors. In Vitro Cell Dev Biol Anim 2006; 42 (3-4): 89-95
  • 49 Chakraborty M, Abrams SI, Camphausen K. , et al. Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 2003; 170 (12) 6338-6347
  • 50 Hadrup S, Donia M, Thor Straten P. Effector CD4 and CD8 T cells and their role in the tumor microenvironment. Cancer Microenviron 2013; 6 (02) 123-133
  • 51 Gajewski TF, Meng Y, Blank C. , et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 2006; 213: 131-145
  • 52 Deng L, Liang H, Burnette B. , et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 2014; 124 (02) 687-695
  • 53 Twyman-Saint Victor C, Rech AJ, Maity A. , et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015; 520 (7547): 373-377
  • 54 Reynders K, Illidge T, Siva S, Chang JY, De Ruysscher D. The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treat Rev 2015; 41 (06) 503-510
  • 55 Ghodadra A, Bhatt S, Camacho JC, Kim HS. Abscopal effects and yttrium-90 radioembolization. Cardiovasc Intervent Radiol 2016; 39 (07) 1076-1080
  • 56 Deipolyi AR, Bromberg JF, Erinjeri JP, Solomon SB, Brody LA, Riedl CC. Abscopal effect after radioembolization for metastatic breast cancer in the setting of immunotherapy. J Vasc Interv Radiol 2018; 29 (03) 432-433
  • 57 Adashek JJ, Salgia M, Dizman N, Kessler J, Pal SK. Concomitant radioembolization and immune checkpoint inhibition in metastatic renal cell carcinoma. Case Rep Oncol 2018; 11 (02) 276-280
  • 58 Patel K, Sullivan K, Berd D. , et al. Chemoembolization of the hepatic artery with BCNU for metastatic uveal melanoma: results of a phase II study. Melanoma Res 2005; 15 (04) 297-304
  • 59 Sato T. Locoregional immuno(bio)therapy for liver metastases. Semin Oncol 2002; 29 (02) 160-167
  • 60 Kanai T, Monden M, Sakon M. , et al. New development of transarterial immunoembolization (TIE) for therapy of hepatocellular carcinoma with intrahepatic metastases. Cancer Chemother Pharmacol 1994; 33 (Suppl): S48-S54
  • 61 Valsecchi ME, Terai M, Eschelman DJ. , et al. Double-blinded, randomized phase II study using embolization with or without granulocyte-macrophage colony-stimulating factor in uveal melanoma with hepatic metastases. J Vasc Interv Radiol 2015; 26 (04) 523-32.e2
  • 62 Sato T, Eschelman DJ, Gonsalves CF. , et al. Immunoembolization of malignant liver tumors, including uveal melanoma, using granulocyte-macrophage colony-stimulating factor. J Clin Oncol 2008; 26 (33) 5436-5442
  • 63 Kudo M. Immuno-oncology in hepatocellular carcinoma: 2017 update. Oncology 2017; 93 (Suppl. 01) 147-159
  • 64 Slovak R, Ludwig JM, Gettinger SN, Herbst RS, Kim HS. Immuno-thermal ablations - boosting the anticancer immune response. J Immunother Cancer 2017; 5 (01) 78
  • 65 Iñarrairaegui M, Melero I, Sangro B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin Cancer Res 2018; 24 (07) 1518-1524
  • 66 Duffy AG, Ulahannan SV, Makorova-Rusher O. , et al. Tremelimumab in combination with ablation in patients with advanced hepatocellular carcinoma. J Hepatol 2017; 66 (03) 545-551
  • 67 Weng DS, Zhou J, Zhou QM. , et al. Minimally invasive treatment combined with cytokine-induced killer cells therapy lower the short-term recurrence rates of hepatocellular carcinomas. J Immunother 2008; 31 (01) 63-71
  • 68 Shuqun C, Mengchao W, Han C. , et al. Combination transcatheter hepatic arterial chemoembolization with thymosin alpha1 on recurrence prevention of hepatocellular carcinoma. Hepatogastroenterology 2004; 51 (59) 1445-1447