Vet Comp Orthop Traumatol 1994; 07(04): 158-169
DOI: 10.1055/s-0038-1633090
Original Research
Schattauer GmbH

Avian Fracture Healing Following Stabilization with Intramedullary Polyglycolic Acid Rods and Cyanoacrylate Adhesive vs. Polypropylene Rods and Polymethylmethacrylate

K. G. Mathews
1   Department of Small Animal Clinical Sciences, University of Minnesota, St. Paul, Minnesota, the California, USA
,
L. J. Wallace
1   Department of Small Animal Clinical Sciences, University of Minnesota, St. Paul, Minnesota, the California, USA
,
P. T. Redig
2   Department of The Raptor Center, University of Minnesota, St. Paul, Minnesota, the California, USA
,
J. E. Bechtold
4   Biomechanics Laboratory, Hennepin County Medical Center, Minneapolis, Minnesota, and the California, USA
,
R.R. Pool
5   Department of Pathology, School of Veterinary Medicine, University of California, Davis, California, USA
,
V. L. King
1   Department of Small Animal Clinical Sciences, University of Minnesota, St. Paul, Minnesota, the California, USA
› Author Affiliations
Further Information

Publication History

Received for publication 21 April 1994

Publication Date:
08 February 2018 (online)

Summary

Avian fracture healing was evaluated for twelve weeks following the repair of transverse mid-diaphyseal humeral fractures. Radiographic, histological, and biomechanical assessment of healing was used to compare a currently used method of repair - a permanent intramedullary polypropylene rod and polymethylmethacrylate bone cement, to a new biodegradable repair technique which utilized intramedullary polyglycolic acid rods and cyanoacry-late adhesive. Histological response to the biodegradable implants consisted of a granulomatous foreign body reaction that did not impair fracture healing. Fibrous encapsulation occurred around the permanent devices. Biodegradable repairs developed more periosteal callus, and early complications were more common following biodegradable repair, but there was little difference between the two groups biomechanically. Polyglycolic acid implants appear to be viable alternatives for the repair of some avian fractures. Investigation into the use of other biodegradable polymers for avian fracture fixation is warranted.

Avian fracture healing following the repair of trans-verse humeral fractures with intramedullary biodegradable polyglycolic acid (PGA) rods and cyanoacrylate adhesive was compared to healing following repair with polypropylene rods and polymethylmethacrylate (PMMA) bone cement. Foreign body reaction to the PGA/cyanoacrylate fixation occurred, but did not impair fracture healing. Biomechanical testing revealed few differences between the two fixation methods at 0-12 weeks following fracture repair.

 
  • References

  • 1 Redig PT. A clinical review of orthopedic techniques used in the rehabilitation of raptors. In: Wild Bird Medicine - A Course in Avian Physiology, Medicine, and Surgery. Redig PT, Duke GE. (eds). St. Paul, MN: 1987: 83-98.
  • 2 Bennett RA, Kuzma AB. Fracture management in birds. J Zoo Wildlife Med 1992; 23: 5-38.
  • 3 Bush M, Montali RJ, Novak GR, James AE. The healing of avian fractures: a histological xeroradiographic study. J Am Anim Hosp Assoc 1976; 12: 768-73.
  • 4 Bush M. External fixation of avian fractures. JAVMA 1977; 171: 943-6.
  • 5 Redig P, Roush JC. Orthopedic and soft tissue surgery in raptorial birds. In: Zoo and Wild Animal Medicine, 1st edn. Fowler M. (ed). Philadelphia: WB Saunders; 1978: 246-53.
  • 6 Lind PJ, Gushwa DA, Vanek JA. Fracture repair in two owls using polypropylene rods and acrylic bone cement. AAV Today 1988; 2: 128-32.
  • 7 Williams RJ, Holland M, Milton JL, Hoover JP. A comparative study of treatment methods for long bone fractures. Compan Anim Pract 1987; 1: 48-55.
  • 8 Putney DL, Borman ER, Lohse CL. Methylmethacrylate fixation of avian humeral fractures: a radiographic histologic study. J Am Anim Hosp Assoc 1983; 18: 773-82.
  • 9 Newton CD, Zeitlin S. Avian fracture healing. JAVMA 1977; 170: 620-5.
  • 10 MacCoy DM. High density polymer rods as an intramedullary fixation device in birds. J Am Anim Hosp Assoc 1983; 19: 767-72.
  • 11 Levitt L. Avian orthopedics. Comp Cont Ed 1989; 11: 899-907.
  • 12 Westfall ML, Egger EL. The management of long bone fractures in birds. Iowa State Vet 1979; 2: 81-7.
  • 13 Kuzma AB, Hunter B. A new technique for avian fracture repair using IM polymethylmethacrylate and bone plate fixation. J Am Anim Hosp Assoc 1991; 27: 239-48.
  • 14 Anderson GI. Polymethylmethacrylate: a re-view of the implications and complications of its use in orthopaedic surgery. Vet Comp Orthop Trauma 1988; 2: 74-9.
  • 15 Wan P, Adair HS, Patton CS. Evaluation of polydioxinone pins in transverse mid-humeral osteotomies in pigeons. Trans ACVS Vet Symposium Miami, FL: 1992: 31.
  • 16 Raiha JE. Fixation of transposed tibial tuberosities with biodegradable rods in dogs with luxating patellas. J Am Anim Hosp Assoc 1993; 29: 151-6.
  • 17 Vert M, Christel P, Chabot F, Leray J. Bioresorbable plastic material for bone surgery. In: Macromolecular Biomaterials. Hastings GW, Ducheyne P. (eds). Boca Raton: CRC Press; 1984: 119-42.
  • 18 Woo SL-Y, Lothringer KS, Akeson WH. et al. Less rigid internal fixation plates: historical perspectives and new concepts. J Orthop Res 1984; 1: 431-49.
  • 19 Rokkanen P, Vainionpaa S, Tormala P. et al. Biodegradable implants in fracture fixation: Early results of treatment of fractures of the ankle. Lancet 1985; 1: 1422-4.
  • 20 Tormala P, Laiho J, Helevirta P. et al. Resorbable surgical devices. Vth Int Conf Polymers in Medicine and Surgery 1986; 16: 1-6.
  • 21 Axelson P, Raiha J, Sittnikow K. et al. The use of biodegradable implants in the fixation of small animal cancellous bone fractures. Acta Vet Scand 1988; 29: 469-76.
  • 22 Axelson P, Makela S, Vainionpaa S. et al. Biodegradable implants in the fixation of physeal fractures in cats and dogs. Acta Vet Scand 1988; 29: 477-84.
  • 23 Axelson P, Raiha J, Mero M. et al. The use of a biodegradable implant in fracture fixation: a review of the literature and a report of two clinical Cases. J Small Anim Pract 1988; 29: 249-55.
  • 24 Axelson P. Fixation of cancellous bone and physeal canine and feline fractures with biodegradable self-reinforced polyglycolide devices. PhD Dissertation - Department of Surgery, College of Veterinary Medicine, Helsinki, Finland, 1989
  • 25 Vainionpaa S, Vihtonen K, Mero M. et al. Fixation of experimental osteotomies of the distal femur of rabbits with biodegradable material. Arch Orthop Trauma Surg 1986; 106: 1-4.
  • 26 Miettinen H, Makela EA, Rokkanen Tormala P. Fixation of femoral shaft osteotomy with intramedullary metallic or absorbable rod: An experimental study on growing dogs. J Biomat Sci Polymer Edn 1992; 4: 135-43.
  • 27 Manninen MJ, Paivarinta U, Mikkola J. et al. Shear strength of cancellous bone after osteotomy fixed by biodegradable implants made from PGA and PLLA: experimental study on rabbits. Acta Orthop Scand 1990; 61 (suppl 237): 46.
  • 28 Bostman O, Hirvensalo E, Vainionpaa S. et al. Degradable polyglycolide rods for the internal fixation of displaced bimalleolar fractures. Int Orthopaed 1990; 14: 1-8.
  • 29 Bostman O, Hirvensalo E, Vainionaa S. et al. Ankle fractures treated using biodegradable internal fixation. Clin Orthop Rel Res 1989; 238: 195-203.
  • 30 Bostman O, Vainionpaa S, Hirvensalo E. et al. Biodegradable internal fixation for malleolar fractures - a prospective randomized trial. JBJS 1987; 69-B: 615-9.
  • 31 Bostman O, Hirvensalo E, Makinen J, Rok-kanen P. Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. JBJS 1990; 72-B: 592-6.
  • 32 Bostman O, Makela EA, Tormala P, Rokkanen P. Transphyseal fracture fixation using biodegradable pins. JBJS 1989; 71-B: 706-7.
  • 33 Bostman OM. Absorbable implants for the fixation of fractures. JBJS 1991; 73-A: 148-53.
  • 34 Casteleyn PP, Handelberg F, Haentjens P. Biodegradable rods versus kirschner wire fixation of wrist fractures a randomized trial. JBJS 1992; 74-B: 858-61.
  • 35 Hirvensalo E, Bostman O, Vainionpaa S. et al. Biodegradable fixation in intraarticular fractures of the elbow joint. Acta Orthop Scand 1988; 59 suppl 227 78-9.
  • 36 Hirvensalo E, Bostman O, Partio E. et al. Self-reinforced polyglycolide rods in 768 fractures and osteotomies. Acta Orthop Scand 1990; 61 (suppl 237): 43.
  • 37 Hirvenalo E. Fracture fixation with biodegradable rods forty-one cases of severe ankle fractures. Acta Orthop Scand 1989; 60: 601-6.
  • 38 Hope PG, Williamson DM, Coates CJ, Cole WG. Biodegradable pin fixation of elbow fractures in children. JBJS 1991; 73-B: 965-8.
  • 39 Leung PC, Kumta SM. Use of a bio-absorbable implant in hand surgery. Proc 2nd Conf Int Soc for Fracture Repair - Rochester, MN 1990; 75-6.
  • 40 Makela A, Bostman O, Kekomaki M. et al. Biodegradable fixation of physeal fractures in children. Acta Orthop Scand 1990; 61 (suppl 237): 44.
  • 41 Partio EK, Bostman O, Hirvensalo E. et al. Fixation of fractures with totally absorbable SR-PLLA (self-reinforced poly-L-lactide) screws or with combination of SR-PLLA and SR-PGA screws. A clinical study of 51 patients. Acta Orthop Scand 1990; 61 (suppl 237): 86.
  • 42 Patton GW, Shaffer MW, Kostakos DP. Absorbable pin: a new method of fixation for digital arthrodesis. J Foot Surg 1990; 29: 122-7.
  • 43 Vasenius J, Vainionpaa S, Vihtonenk K. et al. Biodegradable self-reinforced polyglycolide (SR-PGA) composite rods coated with slowly biodegradable polymers for fracture fixation: strength and strength retention in vitro and in vivo. Clinical Materials 1989; 4: 307-17.
  • 44 Majola A, Vainionpaa S, Vihtonen K. et al. Intramedullary fixation of cortical bone osteotomies with self-reinforced polylactic rods in rabbits. Int Orthop 1992; 16: 101-8.
  • 45 Aron DN, Gorse MJ. Clinical use of n-butyl 2-cyanoacrylate for stabilization of osteochondral fragments: preliminary report. J Am Anim Hosp Assoc 1991; 27: 203-10.
  • 46 Berenstein A, Hieshma G. Clinical vs experimental use of isobutyl-2-cyanoacrylate. Letters to the Editor. J Neurosurg 1987; 67: 318-9.
  • 47 Bonutti PM, Weiker GG, Andrish JT. Isobutyl cyanoacrylate as a soft tissue adhesive. Clin Orthop Rel Res 1988; 229: 241-8.
  • 48 Brauer GM, Kumpula JW, Termini DJ, Davidson KM. Durability of the bond between bone and various 2-cyanoacrylates in an aqueous environment. J Biomed Mat Res 1979; 13: 593-606.
  • 49 Cameron JL, Woodward SC, Pulaski EJ. et al. The degredation of cyanoacrylate tissue adhesive I. Surgery 1965; 58: 424-30.
  • 50 Corn CR, Corn O, Matsumoto T. Osteosyn-thesis employing isobutyl-cyanoacrylate monomer. Int Surg 1972; 57: 483-7.
  • 51 Cromwell LD, Freeny PC, Kerber CW. et al. Histologic analysis of tissue response to bucrylate-pantopaque mixture. AJR 1986; 147: 627-31.
  • 52 Eiferman RA, Snyder JW. Antibacterial effect of cyanoacrylate glue. Arch Opthalmol 1983; 101: 958-60.
  • 53 Gorse MJ, Aron DN, Rowland GN. et al. Evaluation of n-butyl 2-cyanoacrylate for the fixation of osteochondral fractures. Vet Comp Orthop Trauma 1991; 4: 11-5.
  • 54 Hampel NL, Pijanowski GJ, Johnson RG. Effects of isobutyl-2-cyanoacrylate on bone healing. Am J Vet Res 1986; 47: 1605-10.
  • 55 Hampel NL, Johnson RG, Pijanowski GJ. Effects of isobutyl-2-cyanoacrylate on skin healing. Compendium 1991; 13: 80-3.
  • 56 Harper MC, Ralston M. Isobutyl 2-cyanoacrylate as an osseous adhesive in the repair of osteochondral fractures. J Biomed Mat Res 1983; 17: 167-77.
  • 57 Harper MC. Stabilization of osteochondral fragments using limited placement of cyanoacrylate in rabbits. Clin Orthop Rel Res 1988; 231: 272-6.
  • 58 Hunter KD. Cyanoacrylate tissue adhesive in osseous repair. Br J Oral Surg 1976; 14: 80-6.
  • 59 Kilpikiri J, Lapsinsuo M, Tormala P. et al. Bonding strength of alkyl-2-cyanoacrylates to bone in vitro. J Biomed Mat Res 1986; 20: 1095-102.
  • 60 Lamborn PB, Soloway HB, Matsumoto T, Aaby GV. Comparison of tensile strength of wounds closed by sutures and cyanoacrylates. Am J Vet Res 1970; 31: 125-30.
  • 61 Lehman RAW, West RL, Leonard F. Toxicity of alkyl 2-cyanoacrylates II. Bacterial growth. Arch Surg 1966; 93: 447-50.
  • 62 Matsumoto T, Nemhauser GM, Soloway HB. et al. Cyanoacrylate tissue adhesives: an experimental and clinical evaluation. Military Medicine 1969; 134: 247-52.
  • 63 Matsumoto T, Pani KC, Hardaway RM, Leonard F. N-alkyl-a-cyanoacrylate monomers in surgery. Arch Surg 1967; 94: 153-6.
  • 64 Pani KC, Gladieux G, Brandes G. et al. The degredation of n-butyl alpha cyanoacrylate tissue adhesive II. Surgery 1968; 63: 481-9.
  • 65 Papatheofanis FJ. Cytotoxicity of alkyl-2-cyanoacrylate adhesives. J Biomed Mat Res 1989; 23: 661-8.
  • 66 Papatheofanis FJ. Surgical repair of rabbit tibia osteotomy using isobutyl-2-cyanoacrylate. Arch Orthop Trauma Surg 1989; 108: 236-7.
  • 67 Papatheofanis FJ. Contribution of hydroxyapatite to the tensile strength of the isobutyl-2-cyanoacrylate - bone bond. Biomaterials 1989; 10: 185-6.
  • 68 Pardo AD, Bright RM, Walker ME, Patton CS. Transcatheter thoracic duct embolization in the dog an experimental study. Vet Surg 1989; 18: 279-85.
  • 69 Toriumi DM, Raslan WF, Friedman M, Tardy E. Histotoxicity of cyanoacrylate tissue adhesives. Arch Otolaryngol Head Neck Surg 1990; 116: 546-50.
  • 70 Tseng YC, Tabata Y, Hyon SH, Ikada Y. In vitro toxicity test of 2-cyanoacrylate polymers by cell culture method. J Biomed Materials Res 1990; 24: 1355-67.
  • 71 Vinters HV, Galil KA, Lundie MJ, Kaufmann JCE. The histotoxicity of cyanoacrylates. Neuroradiology 1985; 27: 279-91.
  • 72 Vainionpaa S, Kilpikari J, Laiho J. et al. Strength and strength retention in vitro, of absorbable, self-reinforced polyglycolide (PGA) rods for fracture fixation. Biomaterials 1987; 8: 46-8.
  • 73 Rokkanen P, Majola A, Vasenius J, Vainionpaa S. Strength retention of self-reinforced polyglygolic (SR-PGA) and SR-polylactic acid (PLA) composite rods in vitro and in vivo. Acta Orthop Scand 1990; 61 (suppl 235): 51.
  • 74 Claes L, Burri C, Kiefer H, Mutschler W. Refixation of osteochondral fragments with resorbable polydioxinone pins in animal experiments. Transactions of the 11th, Annual Meeting of the Society for Biomaterials 1985: 163.
  • 75 Majola A, Vainionpaa S, Vihtonen K. et al. Biodegradation and biocompatability of polylactic acid in bone. Acta Orthop Scand 1988; 59 (suppl 227) 16.
  • 76 Taylor RA. Clinical use of absorbable pins for intra-articular fracture repair and stabilization of osteochondral fragments. Trans 19th Annual Conf Vet Orthop Soc - Key-stone, CO 1992: 37.
  • 77 Vainionpaa S. Biodegradation of polyglycolic acid in bone tissue: An experimental study in rabbits. Arch Orthop Trauma Surg 1986; 104: 333-8.
  • 78 Hollinger JO, Battistone GC. Biodegradable bone repair materials - synthetic polymers and ceramics. Clin Orthop Rel Res 1986; 207: 290-305.
  • 79 Makela EA, Vainionpaa S, Vihtonen K. et al. The effect of penetrating biodegradable implant on the epiphyseal plate: an experimental study on growing rabbits with special regard to polyglactin 910. J Ped Orthop 1987; 7: 415-20.
  • 80 Banks WJ. In: Applied Veterinary Histology. 2nd edn. Stamathis G. (ed). Baltimore: Williams and Wilkins; 1986: 98.
  • 81 Miettinen H, Makela EA, Vainio J. et al. The effect of an intramedullary biodegradable self-reinforced polyglycolic acid implant on tubular bone. An experimental study in growing dogs. J Biomat Sci Polymer Edn 1992; 3: 435-42.
  • 82 Hubbard MJS. The effect of acrylic cement on the union of internally fixed experimental fractures of the femoral shaft in the rabbit. Injury 1980; 11: 325-30.
  • 83 Huiskes R, Slooff TJ. Thermal injury of cancellous bone, following pressurized penetration of acrylic cement. Orthopaedic Trans 1981; 5: 277-8.
  • 84 Burstein AH, Frankel VH. A standard test for laboratory animal bone. J Biomechanics 1971; 4: 155-8.
  • 85 Panjabi MM, Walter SD, Karuda M. et al. Correlations of radiographic analysis of healing fractures with strength: a statistical analysis of experimental osteotomies. J Orthopaed Res 1985; 3: 212-8.
  • 86 Morgan JP, Silverman S. In: Techniques of Veterinary Radiography, 4th edn. Jowa: Iowa State University Press; 1982: 259-60.