Nervenheilkunde 2003; 22(07): 346-349
DOI: 10.1055/s-0038-1626315
Original- und Übersichtsarbeiten/Original and Review Articles
Schattauer GmbH

Neuroendokrine Effekte der repetitiven transkraniellen Magnetstimulation

Fokus auf Dopamin und VasopressinNeuroendocrinological changes induced by transcranial magnetic stimulation (rTMS)A focus on dopamine and vasopressin
M. E. Keck
1   Max-Planck-Institut für Psychiatrie (Direktor: Prof. Dr. Dr. Florian Holsboer)
,
T. Welt
1   Max-Planck-Institut für Psychiatrie (Direktor: Prof. Dr. Dr. Florian Holsboer)
,
A. Erhardt
1   Max-Planck-Institut für Psychiatrie (Direktor: Prof. Dr. Dr. Florian Holsboer)
,
M. B. Müller
1   Max-Planck-Institut für Psychiatrie (Direktor: Prof. Dr. Dr. Florian Holsboer)
,
I. Sillaber
1   Max-Planck-Institut für Psychiatrie (Direktor: Prof. Dr. Dr. Florian Holsboer)
› Author Affiliations
Further Information

Publication History

Publication Date:
18 January 2018 (online)

Zusammenfassung

Seit Anfang der neunziger Jahre des vergangenen Jahrhunderts wird die repetitive transkranielle Magnetstimulation (rTMS) als mögliches Therapieverfahren bei verschiedenen psychiatrischen Krankheitsbildern diskutiert. Nach dem Faradayschen Prinzip kann über die Induktion eines Magnetfeldes im Schädelinneren ein schmerzloser elektrischer Stromfluss erzeugt werden. Hervorzuheben ist, dass die während und nach Magnetstimulation gemessenen neurobiologischen Effekte nicht durch das Magnetfeld selbst, sondern durch den hierüber intrazerebral induzierten elektrischen Strom, welcher zu neuronaler Depolarisation führt, verursacht werden. Dies wiederum beeinflusst neuronale Netzwerke, welche bei psychiatrischen Erkrankungen möglicherweise dysfunktional sind. Erst in letzter Zeit wurden in der Grundlagenforschung Kenntnisse über die durch rTMS induzierten neurobiologischen Veränderungen gewonnen, die den beschriebenen klinischen Effekten zugrunde liegen und zu einer Optimierung der bislang eher unspezifischen klinischen Anwendung von rTMS führen könnten. Diese zeigen sich tierexperimentell unter anderem in spezifischen Änderungen der Freisetzungsmuster von Neuromodulatoren und Neurotransmittern in psychopathologisch relevanten Hirnregionen. Von besonderem Interesse sind hierbei als klassischer Neurotransmitter das Monoamin Dopamin sowie das Neuropeptid Vasopressin. Letzteres weist vielfältige neuromodulatorische Eigenschaften auf, seine Bedeutung für die Pathogenese der Depression wird zunehmend erkannt.

Summary

The potential therapeutic properties of repetitive transcranial magnetic stimulation (rTMS) in the treatment of various psychiatric disorders are under discussion since the early nineties of the last century. According to Faraday’s law, the induction of a magnetic field evokes intracerebral electric currents. It is important to note that the effects obtained by use of rTMS do not occur on the basis of the magnetic field applied but are achieved by the electric field induced that ultimately leads to neuronal depolarization. This, in turn, influences neuronal networks thought to be dysfunctional in psychiatric disorders. In recent years, increasing knowledge concerning the rTMS-induced neurobiological changes could be accumulated in basic science. The mechanisms observed could underly the clinical effects reported and may finally help to optimize the clinical efficacy of rTMS. rTMS can induce specific alterations in neuronal networks as reflected by changes in neurotransmitter/neuromodulator release in psychopathologically relevant brain regions. The classical neurotransmitter dopamine and the neuropeptide vasopressin hereby are of particular interest. The latter exerts a multitude of neuromodulatory functions and its role in the pathogenesis of depressive disorder is increasingly recognized.

 
  • Literatur

  • 1 Crawley JN, Corwin RL. Biological actions of cholecystokinin. Peptides 1994; 05: 731-55.
  • 2 Czéh B, Welt T, Fischer AK, Erhardt A, Schmitt W, Müller MB, Fuchs E, Keck ME. Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis. Biol Psychiatry 2002; 52: 1057-65.
  • 3 Diana M, Muntoni AL, Pistis M, Melis M, Gessa GL. Lasting reduction in mesolimbic dopamine neuronal activity after morphine withdrawal. Eur J Neurosci 1999; 11: 1037-41.
  • 4 Diorio D, Viau V, Meaney MJ. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitaryadrenal response to stress. J Neurosci 1993; 13: 3839-47.
  • 5 Edwards E, Kitt C, Oliver E, Finkelstein J, Wagster M, McDonald WM. Depression and Parkinson’s disease: A new look at an old problem. Depress Anxiety 2002; 16: 39-48.
  • 6 Fibiger HC. Neurobiology of depression: focus on dopamine. Depress Mania 1995; 49: 1-17.
  • 7 Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand JP, Soubrié P. Anxiolytic-and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR 149415, suggest an innovative approach for the treatment of stressrelated disorders. Proc Natl Acad Sci USA 2002; 99: 6370-5.
  • 8 Groenewegen HJ, Wright CI, Uylings HBM. The anatomical relationship of the prefrontal cortex with limbic structures and the basal ganglia. J Psychopharmacol 1997; 11: 99-106.
  • 9 Hedges DW, Salyer DL, Higginbotham BJ, Lund TD, Hellewell JL, Ferguson D, Lephart ED. Transcranial magnetic stimulation (TMS) effects on testosterone, prolactin, and corticosterone in adult male rats. Biol Psychiatry 2002; 51: 417-21.
  • 10 Heinz A. Anhedonia – a general nosology correlation of a dysfunction of the dopaminergic reward system?. Nervenarzt 1999; 70: 391-8.
  • 11 Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacol 2000; 23: 477-501.
  • 12 Holsboer F, Barden N. Antidepressants and hypothalamic-pituitary-adrenocortical regulation. Endocr Rev 1996; 17: 187-205.
  • 13 Kanno M, Matsumoto M, Togashi H, Yoshioka M, Mano Y. Effects of repetitive transcranial magnetic stimulation on behavioral and neurochemical changes in rats during an elevated plus-maze test. J Neurol Sci 2003; 211: 5-14.
  • 14 Keck ME, Engelmann M, Müller MB, Henniger MSH, Hermann B, Rupprecht R, Neumann ID, Toschi N, Landgraf R, Post A. Repetitive transcranial magnetic stimulation induces active coping strategies and attenuates the neuroendocrine stress response in rats. J Psychiat Res 2000; 34: 265-76.
  • 15 Keck ME, Holsboer F. Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 2001; 22: 835-44.
  • 16 Keck ME, Sillaber I, Ebner K, Welt T, Toschi N, Kaehler ST, Singewald N, Philippu A, Elbel GK, Wotjak CT, Holsboer F, Landgraf R, Engelmann M. Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci 2000; 12: 3713-20.
  • 17 Keck ME, Welt T, Erhardt A, Müller MB, Toschi N, Holsboer F, Sillaber I. Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology 2002; 43: 101-9.
  • 18 Keck ME, Welt T, Müller MB, Uhr M, Ohl F, Wigger A, Toschi N, Holsboer F, Landgraf R. Reduction of hypothalamic vasopressinergic hyperdrive contributes to clinically relevant behavioral and neuroendocrine effects of chronic paroxetine treatment in a psychopathological rat model. Neuropsychopharmacol 2003; 28: 235-43.
  • 19 Keck ME, Welt T, Post A, Müller MB, Toschi N, Wigger A, Landgraf R, Holsboer F, Engelmann M. Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects. Neuropsychopharmacol 2001; 24: 337-49.
  • 20 Keck ME, Wigger A, Welt T, Müller MB, Gesing A, Reul JMHM, Holsboer F, Landgraf R, Neumann ID. Vasopressin mediates the response of the combined dexamethasone/CRH test in hyper-anxious rats: implications for pathogenesis of affective disorders. Neuropsychopharmacol 2002; 26: 94-105.
  • 21 Klitenick M A, Deutch AY, Churchill L, Kalivas PW. Topography and functional role of dopaminergic projections from the ventral mesencephalic tegmentum to the ventral pallidum. Neuroscience 1992; 50: 371-86.
  • 22 Landgraf R, Wotjak CT, Neumann ID, Engelmann M. Release of vasopressin within the brain contributes to neuroendocrine and behavioral regulation. In: Urban IJA, Burbach JPH, De Wied D. (eds). Progress in Brain Research 119. Amsterdam: Elsevier; 1998: 201-20.
  • 23 Loas G, Boyer P. Anhedonia in endogenomorphic depression. Psychiatr Res 1996; 60: 57-65.
  • 24 Loas G. Relationships between anhedonia, depression, and schizophrenia. J Nerv Ment Dis 2002; 190: 717-8.
  • 25 Müller MB, Toschi N, Kresse AE, Post A, Keck ME. Long-term repetitive transcranial magnetic stimulation increases the expression of brainderived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacol 2000; 23: 205-15.
  • 26 Nemeroff CB, Owens MJ. Treatment of mood disorders. Nat Neurosci 2002; 05: 1068-70.
  • 27 Nestler EJ. From neurobiology to treatment: progress against addiction. Nat Neurosci 2002; 05: 1076-9.
  • 28 Padberg F, Möller HJ. Repetitive transcranial magnetic stimulation: Does it have potential in the treatment of depression?. CNS Drugs 2003; 17: 383-403.
  • 29 Post A, Keck ME. Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms?. J Psychiat Res 2001; 35: 193-215.
  • 30 Post A, Müller MB, Engelmann M, Keck ME. Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. Eur J Neurosci 1999; 11: 3247-54.
  • 31 Purba JS, Hoogendijk WJG, Hofman MA, Swaab DF. Increased number of vasopressinand oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiat 1996; 53: 137-43.
  • 32 Raadsheer FC, Van Heerikhuize JJ, Lucassen PJ, Hoogendijk WJG, Tilders FJH, Swaab DF. Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer`s disease and depression. Am J Psychiatry 1995; 152: 1372-6.
  • 33 Rampello L, Nicoletti F. Dopamine and depression – Therapeutic implications. CNS Drugs 2000; 13: 35-45.
  • 34 Reul JMHM, Gesing A, Droste S, Stec ISM, Weber A, Bachmann C, Bilang-Bleuel A, Holsboer F, Linthorst ACE. The brain mineralocorticoid receptor: greedy for ligand, mysterious in function. Eur J Pharmacol 2000; 405: 235-49.
  • 35 Rossetti ZL, Hmaidan Y, Gessa GL. Marked inhibition of mesolimbic dopamine release: a common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol 1992; 221: 227-34.
  • 36 Schildkraut J. The catecholamine hypothesis of affective disorders: A review of supportive evidence. Am J Psychiatry 1965; 122: 509-22.
  • 37 Sesack SR, Pickel VM. Prefrontal cortex efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 1992; 320: 145-60.
  • 38 Siebner HR, Rossmeier C, Mentschel C, Peinemann A, Conrad B. Short-term motor improvement after sub-threshold 5-Hz repetitive transcranial magnetic stimulation of the primary motor hand area in Parkinson’s disease. J Neurol Sci 2000; 178: 91-4.
  • 39 Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 2001; 21: RC157 (1-4).
  • 40 Weiss F, Parsons LH, Schulteis G, Hyytia P, Lorang MT, Bloom FE, Koob GF. Ethanol selfadministration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J Neurosci 1996; 16: 3474-85.