Thromb Haemost 2002; 88(01): 137-143
DOI: 10.1055/s-0037-1613166
Review Article
Schattauer GmbH

Characterization and Comparative Evaluation of a Novel PAI-1 Inhibitor

Ann Gils
1   Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
,
Jean-Marie Stassen
2   Boehringer Ingelheim Pharma KG, Biberach, Germany
,
Herbert Nar
2   Boehringer Ingelheim Pharma KG, Biberach, Germany
,
Joerg T. Kley
2   Boehringer Ingelheim Pharma KG, Biberach, Germany
,
Wolfgang Wienen
2   Boehringer Ingelheim Pharma KG, Biberach, Germany
,
Uwe J. Ries
2   Boehringer Ingelheim Pharma KG, Biberach, Germany
,
Paul J. Declerck
1   Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
› Author Affiliations
Further Information

Publication History

Received 28 January 2002

Accepted after resubmission 08 April 2002

Publication Date:
09 December 2017 (online)

Summary

Plasminogen activator inhibitor-1 (PAI-1), the primary physiological inhibitor of both tissue-type plasminogen activator and urokinasetype plasminogen activator in plasma, is a well established risk factor in thrombotic diseases. Reduction of active PAI-1 levels may lead to a decreased tendency of thrombosis. Compounds that can suppress pharmacologically active PAI-1 levels are therefore considered as putative drugs.

In the present study, we describe the PAI-1 neutralizing properties and mechanism of a newly selected compound (i. e. fendosal, HP129) in comparison to four previously reported compounds (i. e. AR-H029953XX, XR1853, XR5118 and the peptide TVASS) using different assays. The inhibitory effect of these compounds on active PAI-1 was analyzed by a plasmin-coupled chromogenic assay (Coaset® t-PA), direct chromogenic assays (t-PA, u-PA) and quantification of complex formation by ELISA, SDS-PAGE and surface plasmon resonance. Comparative evaluation of the obtained IC50 values reveals large differences [i. e. IC50 of 15 µM (HP129) vs. >1000 µM (XR5118) determined at 37° C using SDS-PAGE] between the compounds studied.

Importantly, the relative potency of the various compounds is also dependent on the method used (10 to 170-fold differences in IC50 values). Characterization of the PAI-1 forms (i. e. active, non-reactive and substrate) generated upon inactivation reveals that the newly described compound HP129 induces a unique pathway (i. e. active to non-reactive conversion via a substrate-behaving intermediate) of inactivation compared to the other compounds.

Taken together, these data strongly suggest that the various compounds act through different mechanisms. In addition, the results stress the necessity for a careful selection of the method used for the evaluation of PAI-1 inhibitors, preferably requiring a panel of screening methods.

 
  • References

  • 1 Kruithof EK, Tran CThang, Ransijn A, Bachmann F. Demonstration of a fast-acting inhibitor of plasminogen activators in human plasma. Blood 1984; 64: 907-13.
  • 2 Zhu YH, Carmeliet P, Fay WP. Plasminogen activator inhibitor-1 is a major determinant of arterial thrombolysis resistance. Circulation 1999; 99: 3050-5.
  • 3 Christ G, Kostner K, Zehetgruber M, Binder BR, Gulba D, Huber K. Plasmin activation system in restenosis: Role in pathogenesis and clinical prediction?. J Thromb Thrombolys 1999; 07: 277-85.
  • 4 Nordt TK, Peter K, Ruef J, Kubler W, Bode C. Plasminogen activator inhibitor type-1 (PAI-1) and its role in cardiovascular disease. Thromb Haemost 1999; 82: 14-8.
  • 5 Juhan-Vague I, Alessi MC, Vague P. Thrombogenic and fibrinolytic factors and cardiovascular risk in non-insulin-dependent diabetes mellitus. Ann Medicine 1996; 28: 371-80.
  • 6 Senno SL, Pechet L. Clinical implications of elevated PAI-1 revisited: Multiple arterial thromboses in a patient with essential thrombocythemia and elevated plasminogen activator inhibitor-1 (PAI-1) levels: A case report and review of the literature. J Thromb Thrombolys 1999; 08: 105-12.
  • 7 Andreasen PA, Kjoller L, Christensen L, Duffy MJ. The urokinase type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72: 1-22.
  • 8 Reuning U, Magdolen V, Wilhelm O, Fischer K, Lutz V, Graeff H, Schmitt M. Multifunctional potential of the plasminogen activation system in tumor invasion and metastasis (Review). Int J Oncology 1998; 13: 893-906.
  • 9 Andreasen PA, Riccio A, Welinder KG, Douglas R, Sartorio R, Nielsen LS, Oppenheimer C, Blasi F, Dano K. Plasminogen activator inhibitor type-1: reactive center and amino-terminal heterogeneity determined by protein and cDNA sequencing. FEBS Lett 1986; 209: 213-8.
  • 10 Ginsburg D, Zeheb R, Yang AY, Rafferty UM, Andreasen PA, Nielsen L, Dano K, Lebo RV, Gelehrter TD. cDNA cloning of human plasminogen activator-inhibitor from endothelial cells. J Clin Invest 1986; 78: 1673-80.
  • 11 Ny T, Sawdey M, Lawrence D, Millan JL, Loskutoff DJ. Cloning and sequence of a cDNA coding for the human betamigrating endothelial-celltype plasminogen activator inhibitor. Proc Natl Acad Sci USA 1986; 83: 6776-80.
  • 12 Pannekoek H, Veerman H, Lambers H, Diergaarde P, Verweij CL, van Zonneveld AJ, van Mourik JA. Endothelial plasminogen activator inhibitor (PAI): a new member of the Serpin gene family. EMBO J 1986; 05: 2539-44.
  • 13 Gils A, Declerck PJ. Structure-function relationship in serpins: current concepts and controversies. Thromb Haemost 1998; 80: 531-41.
  • 14 Schechter I, Berger A. On the size of the active site in proteases. Biochem Biophys Res Commun 1967; 27: 157-62.
  • 15 Laskowski Jr M, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem 1980; 49: 593-626.
  • 16 Huber R, Carrell RW. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry 1989; 28: 8951-66.
  • 17 Hekman CM, Loskutoff DJ. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 1985; 260: 11581-7.
  • 18 Declerck PJ, De Mol M, Vaughan DE, Collen D. Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a noninhibitory substrate for tissue-type plasminogen activator. J Biol Chem 1992; 267: 11693-6.
  • 19 Urano T, Strandberg L, Johansson LB, Ny T. A substrate-like form of plasminogen-activator-inhibitor type 1 Conversions between different forms by sodium dodecyl sulphate. Eur J Biochem 1992; 209: 985-92.
  • 20 Munch M, Heegaard CW, Andreasen PA. Interconversions between active, inert and substrate forms of denatured/refolded type-1 plasminogen activator inhibitor. Biochim Biophys Acta 1993; 1202: 29-37.
  • 21 Audenaert AM, Knockaert I, Collen D, Declerck PJ. Conversion of plasminogen activator inhibitor-1 from inhibitor to substrate by point mutations in the reactive-site loop. J Biol Chem 1994; 269: 19559-64.
  • 22 Lawrence DA, Olson ST, Palaniappan S, Ginsburg D. Serpin reactive center loop mobility is required for inhibitor function but not for enzyme recognition. J Biol Chem 1994; 269: 27657-62.
  • 23 Gils A, Declerck PJ. Proteinase specificity and functional diversity in point mutants of plasminogen activator inhibitor 1. J Biol Chem 1997; 272: 12662-6.
  • 24 Gils A, Vleugels N, Tobback K, Knockaert I, Declerck PJ. Characterization of plasminogen activator inhibitor 1 mutants containing the p13 to p10 region of ovalbumin or antithrombin iii: evidence that the p13 residue contributes significantly to the active to substrate transition. Biochim Biophys Acta 1998; 1387 1-2 291-7.
  • 25 Kirkegaard T, Jensen S, Schousboe SL, Petersen HH, Egelund R, Andreasen PA, Rodenburg KW. Engineering of conformations of plasminogen activator inhibitor-1 - A crucial role of beta-strand 5A residues in the transition of active form to latent and substrate forms. Eur J Biochem 1999; 263: 577-86.
  • 26 Gils A, Declerck PJ. Modulation of plasminogen activator inhibitor 1 by Triton X-100 - Identification of two consecutive conformational transitions. Thromb Haemost 1998; 80: 286-91.
  • 27 Levi M, Biemond BJ, van Zonneveld AJ, ten Cate JW, Pannekoek H. Inhibition of plasminogen activator inhibitor-1 activity results in promotion of endogenous thrombolysis and inhibition of thrombus extension in models of experimental thrombosis [see comments]. Circulation 1992; 85: 305-12.
  • 28 Biemond BJ, Levi M, Coronel R, Janse MJ, ten Cate JW, Pannekoek H. Thrombolysis and reocclusion in experimental jugular vein and coronary artery thrombosis Effects of a plasminogen activator inhibitor type 1neutralizing monoclonal antibody. Circulation 1995; 91: 1175-81.
  • 29 Abrahamsson T, Nerme V, Stromqvist M, Akerblom B, Legnehed A, Pettersson K, Eriksson AW. Anti thrombotic effect of a pai 1 inhibitor in rats given endotoxin. Thromb Haemost 1996; 75: 118-26.
  • 30 Debrock S, Declerck PJ. Neutralization of plasminogen activator inhibitor-1 inhibitory properties: identification of two different mechanisms. Biochim Biophys Acta 1997; 1337: 257-66.
  • 31 Berry CN, Lunven C, Lechaire I, Girardot C, OConnor SE. Antithrombotic activity of a monoclonal antibody inducing the substrate form of plasminogen activator inhibitor type 1 in rat models of venous and arterial thrombosis. Br J Pharmacol 1998; 125: 29-34.
  • 32 Ngo TH, Declerck PJ. Suppression of plasminogen activator inhibitor 1 (PAI-1) activity levels in rats by monoclonal antibodies. Fibrinolysis Proteolysis 1998; 12: 335-9.
  • 33 Kvassman JO, Lawrence DA, Shore JD. The acid stabilization of plasminogen activator inhibitor-1 depends on protonation of a single group that affects loop insertion into beta-sheet A. J Biol Chem 1995; 270: 27942-7.
  • 34 Eitzman DT, Fay WP, Lawrence DA, Francis AMChmura, Shore JD, Olson ST, Ginsburg D. Peptide-mediated inactivation of recombinant and platelet plasminogen activator inhibitor-1 in vitro. J Clin Invest 1995; 95: 2416-20.
  • 35 Xue Y, Björquist P, Inghardt T, Linschoten M, Musil D, Sjölin L, Deinum J. Interfering with the inhibitory meachnism of serpins: crystal structure of a complex formed between cleaved plasminogen activator inhibitor type 1 and a reactive-centre loop peptide. Structure 1998; 06: 627-36.
  • 36 Gardsvoll H, van-Zonneveld AJ, Holm A, Eldering E, van-Meijer M, Dano K, Pannekoek H. Selection of peptides that bind to plasminogen activator inhibitor 1 (PAI-1) using random peptide phage-display libraries. FEBS Lett 1998; 431: 170-4.
  • 37 Bryans J, Charlton PR, Chicarelli IRobinson, Collins M, Faint R, Latham C, Shaw I, Trew S. Inhibition of plasminogen activator inhibitor 1 activity by two diketopiperazines, xr330 and xr334 produced by streptomyces sp. J Antibiot 1996; 49: 1014-21.
  • 38 Charlton RWFaint, Bent F, Bryans J, Chicarelli IRobinson, Mackie I, Machin S, Bevan P. Evaluation of a low molecular weight modulator of human plasminogen activator inhibitor-1 activity. Thromb Haemost 1996; 75: 808-15.
  • 39 Charlton P, Faint R, Barnes C, Bent F, Folkes A, Templeton D, Mackie I, Machin S, Bevan P. Xr5118, a novel modulator of plasminogen activator inhibitor 1 (pai 1), increases endogenous tpa activity in the rat. Fibrinolysis & Proteolysis 1997; 11: 51-6.
  • 40 Ehnebom J, Bjorquist P, Andersson JO, Johansson T, Deinum JR. Detergent tween 80 modifies the specific activity of pai 1. Fibrinolysis & Proteolysis 1997; 11: 165-70.
  • 41 Friederich PW, Levi MR, Biemond BJ, Charlton P, Templeton D, Vanzonneveld AJ, Bevan P, Pannekoek H, Tencate JW. Novel low molecular weight inhibitor of pai 1 (xr5118) promotes endogenous fibrinolysis and reduces postthrombolysis thrombus growth in rabbits. Circulation 1997; 96: 916-21.
  • 42 Bjorquist P, Ehnebom J, Inghardt T, Hansson L, Lindberg M, Linschoten M, Stromqvist M, Deinum J. Identification of the binding site for a low-molecular-weight inhibitor of plasminogen activator inhibitor type 1 by site-directed mutagenesis. Biochemistry 1998; 37: 1227-34.
  • 43 Chikanishi T, Shinohara C, Kikuchi T, Endo A, Hasumi K. Inhibition of plasminogen activator inhibitor-1 by 11-keto-9(E),12(E)-octadecadienoic acid, a novel fatty acid produced by Trichoderma sp. J Antibiot 1999; 52: 797-802.
  • 44 Folkes A, Roe MB, Sohal S, Golec J, Faint R, Brooks T, Charlton P. Synthesis and in vitro evaluation of a series of diketopiperazine inhibitors of plasminogen activator inhibitor-1. Bioorg Med Chem Letters 2001; 11: 2589-92.
  • 45 Egelund R, Einholm AP, Pedersen KE, Nielsen RW, Christensen A, Deinum J, Andreasen PA. A regulatory hydrophobic area in the flexible joint region of plasminogen activator inhibitor-1, defined with fluorescent activity-neutralizing ligands - Ligand-induced serpin polymerization. J Biol Chem 2001; 276: 13077-86.
  • 46 Stec WJ, Cierniewski CS, Okruszek A, Kobylanska A, Pawlowska Z, Koziolkiewicz M, Pluskota E, Maciaszek A, Rebowska B, Stasiak M. Stereodependent inhibition of plasminogen activator inhibitor type 1 by phosphorothioate oligonucleotides: proof of sequence specificity in cell culture and in vivo rat experiments. Antisense Nucleic Acid Drug Dev 1997; 07: 567-73.
  • 47 Kobylanska A, Pluskota E, Pawlowska Z, Okruszek A, Cierniewski CS, Stec WJ. The cytotoxicity of anti-PAI-I oligonucleotides and their conjugates. Nucleosides And Nucleotides 1999; 18: 1709-10.
  • 48 Lassman HB, Wilker JC, Anderson VB, Agnew MN, Allen RC, Novick WJ. Fendosal (HP 129): a potent anti-inflammatory and analgesic compound. Agents Actions 1978; 08: 209-17.
  • 49 Jonsson U, Fagerstam L, Lofas S, Stenberg E, Karlsson R, Frostell A, Markey F, Schindler F. Introducing a biosensor based technology for real-time biospecific interaction analysis. Ann Biol Clin Paris 1993; 51: 19-26.
  • 50 Wiman B. Predictive value of fibrinolytic factors in coronary heart disease. Scand J Clin Lab Invest 1999; 59: 23-31.