Synlett 2019; 30(14): 1698-1702
DOI: 10.1055/s-0037-1612083
cluster
© Georg Thieme Verlag Stuttgart · New York

Sodium Selenosulfate from Sodium Sulfite and Selenium Powder: An Odorless Selenylating Reagent for Alkyl Halides to Produce Dialkyl Diselenide Catalysts

Yonghong Liu
b   School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. of China
,
Hai Ling
b   School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. of China
c   Department of Chemistry, East China Normal University, Shanghai, 200062, P. R. of China   Email: xfjiang@chem.ecnu.edu.cn
,
Chao Chen
b   School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. of China
,
Qing Xu
b   School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. of China
,
Lei Yu  *
a   Guangling College, Yangzhou University, Yangzhou, Jiangsu 225000, P. R. of China   Email: yulei@yzu.edu.cn
b   School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. of China
,
c   Department of Chemistry, East China Normal University, Shanghai, 200062, P. R. of China   Email: xfjiang@chem.ecnu.edu.cn
› Author Affiliations
This work was supported by the Nature Science Foundation of Guangling College (ZKZZ18001).
Further Information

Publication History

Received: 12 November 2018

Accepted after revision: 26 December 2018

Publication Date:
07 February 2019 (online)


Published as part of the Cluster Organosulfur and Organoselenium Compounds in Catalysis

Abstract

Na2SeSO3, which can be generated in situ by the reaction of Na2SO3 with Se power, was found to be an odorless reagent for the selenenylation of alkyl halides to produce dialkyl diselenides. These products have been recently shown to be good catalysts for the Baeyer–Villiger oxidation of carbonyl compounds, for the selective oxidation of alkenes, or for the oxidative deoximation of oximes. By using aqueous EtOH as the solvent and avoiding the generation of a malodourous selenol intermediate, the selenylation reaction with Na2SeSO3 is much more environmentally friendly than conventional methods. Owing to the cheap and abundant starting materials and selenium reagents, our novel synthetic method reduces the production costs of dialkyl diselenides as organoselenium catalysts, thereby advancing practical applications of organoselenium-catalysis technologies.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Wirth T. Organoselenium Chemistry. Berlin: Springer; 2000
    • 1b Ogawa A. In Main Group Metals in Organic Synthesis, Vol. 2 . Yamamoto H, Oshima K. Wiley-VCH; Weinheim: 2004: 813
    • 1c Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 1d Wirth T. Organoselenium Chemistry: Synthesis and Reactions. Wiley-VCH; Weinheim: 2011
    • 1e Godoi B, Schumacher RF, Zeni G. Chem. Rev. 2011; 111: 2937
    • 1f Nomoto A, Higuchi Y, Kobiki Y, Ogawa A. Mini-Rev. Med. Chem. 2013; 13: 814
    • 1g Manjare ST, Kim Y, Churchill DG. Acc. Chem. Res. 2014; 47: 2985

      For selected recent articles, see:
    • 2a Casola KK, Gomes MR, Back DF, Zeni G. J. Org. Chem. 2018; 83: 6706
    • 2b Liu M, Li Y, Yu L, Xu Q, Jiang X. Sci. China: Chem. 2018; 61: 294
    • 2c Jing X, Chen C, Deng X, Zhang X, Wei D, Yu L. Appl. Organomet. Chem. 2018; 32: e4332
    • 2d Kodama S, Saeki T, Mihara K, Higashimae S.-i, Kawaguchi S, Sonoda M, Nomoto A, Ogawa A. J. Org. Chem. 2017; 82: 12477
    • 2e Tamai T, Yoshikawa M, Higashimae S, Nomoto A, Ogawa A. J. Org. Chem. 2016; 81: 324
    • 2f Sancineto L, Mariotti A, Bagnoli L, Marini F, Desantis J, Iraci N, Santi C, Pannecouque C, Tabarrini O. J. Med. Chem. 2015; 58: 9601
  • 3 Santoro S, Azeredo JB, Nascimento V, Sancineto L, Braga AL, Santi C. RSC Adv. 2014; 4: 31521

    • For reviews, see:
    • 4a Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T. Angew. Chem. Int. Ed. 2009; 48: 8409
    • 4b Santi C, Santoro S, Battistelli B. Curr. Org. Chem. 2010; 14: 2442
    • 4c Breder A, Ortgies S. Tetrahedron Lett. 2015; 56: 2843
    • 4d Młochowski J, Wójtowicz-Młochowska H. Molecules 2015; 20: 10205
    • 4e Guo R, Liao L, Zhao X. Molecules 2017; 22: 835
  • 5 Rayman MP. Lancet 2012; 379: 1256

    • For selected articles on organoselenium catalysis, see:
    • 6a Liu X, Liang Y, Ji J, Luo J, Zhao X. J. Am. Chem. Soc. 2018; 140: 4782
    • 6b Luo J, Cao Q, Cao X, Zhao X. Nat. Commun. 2018; 9: 527
    • 6c Guo R, Huang J, Zhao X. ACS Catal. 2018; 8: 926
    • 6d Liao L, Guo R, Zhao X. Angew. Chem. Int. Ed. 2017; 56: 3201
    • 6e Guo R, Huang J, Huang H, Zhao X. Org. Lett. 2016; 18: 504
    • 6f Ortgies S, Depken C, Breder A. Org. Lett. 2016; 18: 2856
    • 6g Cresswell AJ, Eey ST.-C, Denmark SE. Nat. Chem. 2015; 7: 146
    • 6h Deng Z, Wei J, Liao L, Huang H, Zhao X. Org. Lett. 2015; 17: 1834
    • 6i Ortgies S, Breder A. Org. Lett. 2015; 17: 2748
    • 6j Chen F, Tan CK, Yeung Y.-Y. J. Am. Chem. Soc. 2013; 135: 1232
    • 6k Trenner J, Depken C, Weber T, Breder A. Angew. Chem. Int. Ed. 2013; 52: 8952

      For selected articles on organoselenium-catalyzed green reactions, see:
    • 7a Wang F, Xu L, Sun C, Xu Q, Huang J.-J, Yu L. Youji Huaxue 2017; 37: 2115
    • 7b Sancineto L, Tidei C, Bagnoli L, Marini F, Lenardão EJ, Santi C. Molecules 2015; 20: 10496
    • 7c Santi C, Di Lorenzo R, Tidei C, Bagnoli L, Wirth T. Tetrahedron 2012; 68: 10530
    • 7d Santoro S, Santi C, Sabatini M, Testaferri L, Tiecco M. Adv. Synth. Catal. 2008; 350: 2881
    • 7e ten Brink G.-J, Fernandes BC. M, van Vliet MC. A, Arends IW. C. E, Sheldon RA. J. Chem. Soc., Perkin Trans. 1 2001; 224
    • 7f ten Brink G.-J, Vis J.-M, Arends IW. C. E, Sheldon RA. J. Org. Chem. 2001; 66: 2429
    • 8a Yu L, Ye J, Zhang X, Ding Y, Xu Q. Catal. Sci. Technol. 2015; 5: 4830
    • 8b Zhang X, Ye J, Yu L, Shi X, Zhang M, Xu Q, Lautens M. Adv. Synth. Catal. 2015; 357: 955
    • 8c Yu L, Wu Y.-, Cao H, Zhang X, Shi X, Luan J, Chen T, Pan Y, Xu Q. Green Chem. 2014; 16: 287
    • 9a Yang Y, Fan X, Cao H, Chu S, Zhang X, Xu Q, Yu L. Catal. Sci. Technol. 2018; 8: 5017
    • 9b Wang T, Jing X, Chen C, Yu L. J. Org. Chem. 2017; 82: 9342
    • 9c Wang Y, Yu L, Zhu B, Yu L. J. Mater. Chem. A 2016; 4: 10828
    • 9d Yu L, Bai Z, Zhang X, Zhang X, Ding Y, Xu Q. Catal. Sci. Technol. 2016; 6: 1804
    • 9e Yu L, Chen F, Ding Y. ChemCatChem 2016; 8: 1033
    • 9f Yu L, Wang J, Chen T, Wang Y, Xu Q. Appl. Organomet. Chem. 2014; 28: 652
    • 9g Yu L, Wang J, Chen T, Ding K, Pan Y. Youji Huaxue 2013; 33: 1096
    • 10a Jing X, Yuan D, Yu L. Adv. Synth. Catal. 2017; 359: 1194
    • 10b Jing X, Wang T, Ding Y, Yu L. Appl. Catal., A 2017; 541: 107
    • 10c Zhang X, Sun J, Ding Y, Yu L. Org. Lett. 2015; 17: 5840
    • 10d Yu L, Li H, Zhang X, Ye J, Liu J, Xu Q, Lautens M. Org. Lett. 2014; 16: 1346
    • 11a Reich HJ. Acc. Chem. Res. 1979; 12: 22
    • 11b Liotta D. Acc. Chem. Res. 1984; 17: 28

      For selected articles, see:
    • 12a Zhao X, Yu Z, Zeng F, Chen J, Wu X, Wu S, Xiao W, Zheng Z. Adv. Synth. Catal. 2005; 347: 877
    • 12b Ścianowski J. Tetrahedron Lett. 2005; 46: 3331
    • 12c Tian F, Yu Z, Lu S. J. Org. Chem. 2004; 69: 4520
    • 12d Krief A, Derock M. Tetrahedron Lett. 2002; 43: 3083
    • 12e Krief A, Dumont W, Delmotte C. Angew. Chem. Int. Ed. 2000; 39: 1669
    • 12f Krief A, Wemmel TV, Redon M, Dumont W, Delmotte C. Angew. Chem. Int. Ed. 1999; 38: 2245
    • 12g Krief A, Delmotte C, Dumont W. Tetrahedron Lett. 1997; 38: 3079
    • 12h Krief A, Delmotte C, Dumont W. Tetrahedron 1997; 53: 12147
    • 12i Nishiyama Y, Katsuura A, Negoro A, Hamanaka S. J. Org. Chem. 1991; 56: 3776
    • 12j Thompson DP, Boudjouk P. J. Org. Chem. 1988; 53: 2109
    • 13a Li Y, Xie W, Jiang X. Chem. Eur. J. 2015; 21: 16059
    • 13b Xiao X, Feng M, Jiang X. Chem. Commun. 2015; 51: 4208
    • 13c Zhang Y, Li Y, Zhang X, Jiang X. Chem. Commun. 2015; 51: 941
    • 13d Li Y, Pu J, Jiang X. Org. Lett. 2014; 16: 2692
    • 13e Qiao Z, Wei J, Jiang X. Org. Lett. 2014; 16: 1212
    • 13f Liu H, Jiang X. Pure Appl. Chem. 2014; 86: 307
    • 13g Qiao Z, Liu H, Xiao X, Fu Y, Wei J, Li Y, Jiang X. Org. Lett. 2013; 15: 2594
  • 14 All reactions were performed in sealed tubes.
  • 15 Dialkyl Diselenides 2am; General ProcedureA glass pressure-reaction tube equipped with a magnetic stirrer bar was charged with Na2SO3 (189.0 mg, 1.5 mmol), Se powder (118.5 mg, 1.5 mmol) and H2O (2 mL). The tube was then filled with N2 and sealed. The mixture was stirred at 140 °C for 48 h, and then cooled to r.t. A solution of the appropriate alkyl halide (1 mmol) in EtOH (1 mL) was added, and the tube filled with air and sealed. The mixture was heated in air at 100 °C for 48 h. The product was then isolated by preparative TLC (silica gel, PE).Dibutyl Diselenide (2a) 17Yellow oil; yield: 100.7 mg (74%). IR (film): 2956, 2924, 2853, 1461, 1377, 1287, 1251, 1210, 1179, 720 cm–1. 1H NMR (400 MHz, CDCl3, TMS): δ = 2.95–2.87 (m, 4 H), 1.74–1.66 (m, 4 H), 1.44–1.37 (m, 4 H), 0.92 (t, J = 7.4 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 33.0, 29.9, 22.6, 13.6.
  • 16 MS (EI, 70 eV): m/z (%) = 274 (10) [M+], 57 (100).Characterization data and NMR spectra of all of the diselenide products are given in the Supporting Information.
    • 17a Lai CW, Lau KS, Chou PM. Chem. Phys. Lett. 2019; 714: 6
    • 17b Zhong Y, Yin L, He P, Liu W, Wu Z, Wang H. J. Am. Chem. Soc. 2018; 140: 1455
    • 17c Wang G, Dong W, Ma P, Yan C, Zhang W, Liu J. Electrochim. Acta 2018; 290: 273
    • 17d Luo J, Sun J, Guo PC, Yang ZS, Wang YX, Zhang QF. Mater. Lett. 2018; 215: 176
  • 18 Crich D, Zou Y. J. Org. Chem. 2005; 70: 3309