Synlett 2019; 30(13): 1592-1596
DOI: 10.1055/s-0037-1611880
letter
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Carbonylative Synthesis of Benzogerminones

Bo Chen
a   Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, P. R. of China
b   Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059 Rostock, Germany   Email: Xiao-Feng.Wu@catalysis.de
,
Xiao-Feng Wu
a   Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, P. R. of China
b   Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059 Rostock, Germany   Email: Xiao-Feng.Wu@catalysis.de
› Author Affiliations
C.B. thanks the Chinese Scholarship Council (CSC) for financial support.
Further Information

Publication History

Received: 30 May 2019

Accepted after revision: 15 June 2019

Publication Date:
03 July 2019 (online)


Abstract

A novel and practical procedure for the synthesis of benzogerminones by carbonylative cyclization has been developed. With Pd(PPh3)4 as the catalyst and DABCO as the base, the desired benzogerminones were isolated in moderate to good yields with good functional group tolerance. To the best of our knowledge, this is the first procedure for benzogerminones synthesis.

Supporting Information

 
  • References and Notes

    • 1a Galietta LJ. V, Springsteel MF, Eda M, Niedzinski EJ, By K, Haddadin MJ, Kurth MJ, Nantz MH, Verkman AS. J. Biol. Chem. 2001; 276: 19723
    • 1b Griffin RJ, Fontana G, Golding BT, Guiard S, Hardcastle IR, Leahy JJ. J, Martin N, Richardson C, Rigoreau L, Stockley M, Smith GC. M. J. Med. Chem. 2005; 48: 569
    • 1c Hyup-Joo Y, Kwan-Kim J, Kang SH, Noh MS, Ha JY, Kyu-Choi J, Min-Lim K, Hoon-Lee C, Chung S. Bioorg. Med. Chem. Lett. 2003; 13: 413
    • 1d Yang X, Sun Y, Xu Q, Guo Z. Org. Biomol. Chem. 2006; 4: 2483
    • 1e Leonard NJ, Herbrandson HF, van Heyningen EM. J. Am. Chem. Soc. 1946; 68: 1279
    • 1f Aimi N, Nishimura M, Miwa A, Hoshino H, Sakai S, Haginiwa J. Tetrahedron Lett. 1989; 30: 4991
    • 1g Razdan RK, Bruni RJ, Mehta AC, Weinhardt KK, Papanastassiou ZB. J. Med. Chem. 1978; 21: 643
    • 1h Nakazumi H, Ueyama T, Kitao T. J. Heterocycl. Chem. 1984; 21: 193
    • 1i Nakib TA, Bezjak V, Meegan MJ, Chandy R. Eur. J. Med. Chem. 1990; 25: 455
    • 1j Gotoda S, Takahashi N, Nakagawa H, Murakami M, Takechi T, Komura T, Uchida T, Takagi Y. Pestic. Sci. 1998; 52: 309
    • 2a Kalinin VN, Shostakovsky MV, Ponomaryov AB. Tetrahedron Lett. 1990; 31: 4073
    • 2b Torii S, Okumoto H, Xu LH. Tetrahedron Lett. 1991; 32: 237
    • 2c Shen CR, Spannenberg A, Wu XF. Angew. Chem. Int. Ed. 2016; 55: 5067
    • 2d Ma WB, Li XL, Yang JM, Liu ZL, Chen BH, Pan XF. Synthesis 2006; 2489
    • 2e Awuah E, Capretta A. Org. Lett. 2009; 11: 3210
    • 2f Miao H, Yang Z. Org. Lett. 2000; 2: 1765
    • 2g Okuro K, Alper H. J. Org. Chem. 1997; 62: 1566
    • 2h Yang Q, Alper H. J. Org. Chem. 2010; 75: 948
    • 2i Liu JM, Liu MW, Yue YY, Zhang NF, Zhang YL, Zhuo KL. Tetrahedron Lett. 2013; 54: 1802
    • 2j Liang B, Huang MW, You ZJ, Xiong ZC, Lu K, Fathi R, Chen JH, Yang Z. J. Org. Chem. 2005; 70: 6097
    • 2k Xue LQ, Shi LJ, Han Y, Xia CG, Huynh HV, Li FW. Dalton Trans. 2011; 40: 7632
    • 2l Ciattini PG, Morera E, Ortar G, Rossi SS. Tetrahedron 1991; 47: 6449
    • 2m Torii S, Okumoto H, Xu LH, Sadakane M, Shostakovsky MV, Ponomaryov AB, Kalinin VN. Tetrahedron 1993; 49: 6773
    • 2n Zhu FX, Wu XF. J. Org. Chem. 2018; 83: 13612
    • 2o Åkerbladh L, Nordeman P, Wejdemar M, Odell LR, Larhed M. J. Org. Chem. 2015; 80: 1464
    • 2p Xiao WJ, Alper H. J. Org. Chem. 1999; 64: 9646
    • 2q Haddad N, Tan J, Farina V. J. Org. Chem. 2006; 71: 5031
    • 2r Kalinin VN, Shostakovsky MV, Ponomaryov AB. Tetrahedron Lett. 1992; 33: 373
    • 2s Grigg R, Liu A, Shaw D, Suganthan S, Woodall DE, Yoganathan G. Tetrahedron Lett. 2000; 41: 7125
    • 3a Chen B, Wu X.-F. Org. Lett. 2019; 21: 2899
    • 3b Chen B., Wu X.-F.; Adv. Synth. Catal.; 2019, in press; DOI: 10.1002/adsc.201900432
    • 4a Hailes RL. N, Oliver AM, Gwyther J, Whittell GR, Manners I. Chem. Soc. Rev. 2016; 45: 5358
    • 4b Rémond E, Martin C, Martinez J, Cavelier F. Chem. Rev. 2016; 116: 11654
    • 4c Komiyama T, Minami Y, Hiyama T. ACS Catal. 2017; 7: 631
    • 4d Su TA, Klausen RS, Kim NT, Neupane M, Leighton JL, Steigerwald ML, Venkataraman L, Nuckolls C. Acc. Chem. Res. 2017; 50: 1088
    • 5a Tacke R, Merget M, Bertermann R, Bernd M, Beckers T, Reissmann T. Organometallics 2000; 19: 3486
    • 5b Fuji S, Miyajima Y, Masuno H, Kagechika H. J. Med. Chem. 2013; 56: 160
  • 6 Pronai L, Arimori S. Biotherapy 1992; 4: 1
  • 7 Hachisu M, Takahashi H, Koeda T, Sekizawa Y. J. Pharmacobio-Dyn. 1983; 6: 814
  • 8 Suzuki F, Brutkiewicz RR, Pollard RB. Anticancer Res. 1985; 5: 479
  • 9 Aso H, Suzuki F, Ebina T, Ishida N. J. Biol. Response Modif. 1989; 8: 180
    • 10a Arcadi A, Cacchi S, Carnicelli V, Marinelli F. Tetrahedron 1994; 50: 437
    • 10b An ZW, Catellani M, Chiusoli GP. J. Organomet. Chem. 1990; 397: 371
  • 11 General Procedure Under an open atmosphere, a 4 mL screw cap vial was charged with Pd(PPh3)4 (1 mol%), DABCO (0.3 mmol), alkyne (0.2 mmol), dibutyl(2-iodophenyl)germane (0.2 mmol), toluene (1 mL), and an oven-dried stirring bar. The vial was closed by a Teflon septum and a phenolic cap and connected to the atmosphere through a needle. Then the vial was fixed in an alloy plate and put into Paar 4560 series autoclave (300 mL). At room temperature, the autoclave is flushed with carbon monoxide for three times and 10 bar of carbon monoxide was charged. The autoclave was placed on a heating plate equipped with magnetic stirring and an aluminum block. The reaction was heated at 100 °C for 16 h. Afterwards, the autoclave was cooled to room temperature and the pressure carefully released. After removal of solvent under reduced pressure, pure product was obtained by column chromatography on silica gel (eluent: pentane/ethyl acetate, 20:1). Compound 3aa: eluting with n-heptane and ethyl acetate 30:1 (v/v), colorless oil, 61 mg, yield 77%. 1H NMR (500 MHz, chloroform-d): δ = 8.28–8.25 (m, 1 H), 7.46–7.43 (m, 3 H), 7.32–7.22 (m, 7 H), 1.38–1.30 (m, 4 H), 1.26–1.21 (m, 4 H), 1.09 (dq, J = 10.1, 6.5 Hz, 4 H), 0.78 (t, J = 7.2 Hz, 6 H). 13C NMR (126 MHz, CDCl3): δ = 188.15, 155.88, 145.35, 142.03, 141.77, 140.49, 133.23, 131.09, 130.02, 129.23, 128.68, 127.87, 127.61, 27.38, 26.05, 14.28, 13.64. HRMS (EI): m/z calcd for C23H28GeO [H]+: 391.1461; found: 391.1461.