Synthesis 2019; 51(14): 2759-2791
DOI: 10.1055/s-0037-1611852
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Photoredox Catalysis Enabled Functionalization of α-Amino Acids and Peptides: Concepts, Strategies and Mechanisms

a   Department of Chemistry, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden   Email: karkas@kth.se
,
a   Department of Chemistry, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden   Email: karkas@kth.se
,
b   Department of Chemistry, New York University, New York, NY 10003, USA   Email: bm2623@nyu.edu
,
a   Department of Chemistry, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden   Email: karkas@kth.se
› Author Affiliations
The organizing committee of the 53rd Bürgenstock Conference and the Swiss Chemical Society are gratefully acknowledged for a JSP fellowship to M.D.K. Financial support from KTH Royal Institute of Technology to M.D.K. is gratefully acknowledged. The Wenner-Gren Foundation and the Stiftelsen Olle Engkvist Byggmästare are kindly acknowledged for postdoctoral fellowships to J.L. and A.S., respectively.
Further Information

Publication History

Received: 23 January 2019

Accepted after revision: 14 May 2019

Publication Date:
04 June 2019 (online)


Dedicated to Professor Björn Åkermark on the occasion of his 85th birthday

Published as part of the Bürgenstock Special Section 2018 Future Stars in Organic Chemistry

Abstract

The selective modification of α-amino acids and peptides constitutes a pivotal arena for accessing new peptide-based materials and therapeutics. In recent years, visible light photoredox catalysis has appeared as a powerful platform for the activation of small molecules via single-electron transfer events, allowing previously inaccessible reaction pathways to be explored. This review outlines the recent advances, mechanistic underpinnings, and opportunities of applying photoredox catalysis to the expansion of the synthetic repertoire for the modification of specific amino acid residues.

1 Introduction

2 Visible-Light-Mediated Functionalization of α-Amino Acids

2.1 Decarboxylative Functionalization Involving Redox-Active Esters

2.2 Direct Decarboxylative Coupling Strategies

2.3 Hypervalent Iodine Reagents

2.4 Dual Photoredox and Transition-Metal Catalysis

2.5 Amination and Deamination Strategies

3 Photoinduced Peptide Diversification

3.1 Gese-Type Bioconjugation Methods

3.2 Peptide Macrocyclization through Photoredox Catalysis

3.3 Biomolecule Conjugation through Arylation

3.4 C–H Functionalization Manifolds

4 Conclusions and Outlook

 
  • References

  • 1 Craik DJ, Fairlie DP, Liras S, Price D. Chem. Biol. Drug Des. 2013; 81: 136
  • 2 Kaspar AA, Reichert JM. Drug Discovery Today 2013; 18: 807
  • 3 Lau JL, Dunn MK. Bioorg. Med. Chem. 2018; 26: 2700
  • 4 Mullard A. Nat. Rev. Drug Discovery 2018; 17: 81
  • 5 Al Musaimi O, Al Shaer D, de la Torre BG, Albericio F. Pharmaceuticals 2018; 11: 42
  • 6 Fosgerau K, Hoffmann T. Drug Discovery Today 2015; 20: 122
  • 7 Henninot A, Collins JC, Nuss JM. J. Med. Chem. 2018; 61: 1382
  • 8 Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. Bioorg. Med. Chem. 2018; 26: 2759

    • For reviews on non-proteinogenic amino acid building blocks, see:
    • 9a Saladino R, Botta G, Crucianelli M. Mini-Rev. Med. Chem. 2012; 12: 277
    • 9b Walsh CT, O’Brien RV, Khosla C. Angew. Chem. Int. Ed. 2013; 52: 7098
    • 9c Lang K, Chin JW. Chem. Rev. 2014; 114: 4764
    • 9d Ravikumar Y, Nadarajan SP, Yoo TH, Lee C.-S, Yun H. Biotechnol. J. 2015; 10: 1862
    • 9e Grayson I, Kessler C. Chim. Oggi 2015; 33: 46
    • 9f Agostini F, Völler J.-S, Koksch B, Acevedo-Rocha CG, Kubyshkin V, Budisa N. Angew. Chem. Int. Ed. 2017; 56: 9680
    • 9g Young DD, Schultz PG. ACS Chem. Biol. 2018; 13: 854
    • 9h Huhmann S, Koksch B. Eur. J. Org. Chem. 2018; 3667

      For reviews on peptidomimetics, see:
    • 10a Vagner J, Qu H, Hruby VJ. Curr. Opin. Chem. Biol. 2008; 12: 292
    • 10b Liskamp RM. J, Rijkers DT. S, Kruijtzer JA. W, Kemmink J. ChemBioChem 2011; 12: 1626
    • 10c Avan I, Hall CD, Katritzky AR. Chem. Soc. Rev. 2014; 43: 3575
    • 10d Qvit N, Rubin SJ. S, Urban TJ, Mochly-Rosen D, Gross ER. Drug Discovery Today 2017; 22: 454
    • 10e Mizuno A, Matsui K, Shuto S. Chem. Eur. J. 2017; 23: 14394

      For reviews on synthesis and applications of macrocyclic peptides, see:
    • 11a White CJ, Yudin AK. Nat. Chem. 2011; 3: 509
    • 11b Hill TA, Shepherd NE, Diness F, Fairlie DP. Angew. Chem. Int. Ed. 2014; 53: 13020
    • 11c Lau YH, de Andrade P, Wu Y, Spring DR. Chem. Soc. Rev. 2015; 44: 91
    • 11d Yudin AK. Chem. Sci. 2015; 6: 30
    • 11e Wu J, Tang J, Chen H, He Y, Wang H, Yao H. Tetrahedron Lett. 2018; 59: 325
  • 12 Vinogradova EV, Zhang C, Spokoyny AM, Pentelute BL, Buchwald SL. Nature 2015; 526: 687
  • 13 Osberger TJ, Rogness DC, Kohrt JT, Stepan AF, White MC. Nature 2016; 537: 214
  • 14 Ohata J, Minus MB, Abernathy ME, Ball ZT. J. Am. Chem. Soc. 2016; 138: 7472
  • 15 Malins LR, deGruyter JN, Robbins KJ, Scola PM, Eastgate MD, Ghadiri MR, Baran PS. J. Am. Chem. Soc. 2017; 139: 5233

    • For selected reviews on site-selective modification of amino acids and peptides, see:
    • 16a Noisier AF. M, Brimble MA. Chem. Rev. 2014; 114: 8775
    • 16b Spicer CD, Davis BG. Nat. Commun. 2014; 5: 4740
    • 16c Tang W, Becker ML. Chem. Soc. Rev. 2014; 43: 7013
    • 16d Boutureira O, Bernardes GJ. L. Chem. Rev. 2015; 115: 2174
    • 16e Krall N, da Cruz FP, Boutureira O, Bernardes GJ. L. Nat. Chem. 2016; 8: 103
    • 16f deGruyter JN, Malins LR, Baran PS. Biochemistry 2017; 56: 3863
    • 16g Vinogradova EV. Pure Appl. Chem. 2017; 89: 1619
    • 16h Sengupta S, Mehta G. Tetrahedron Lett. 2017; 58: 1357
    • 16i Malins LR. Pept. Sci. 2018; 110: e24049
    • 16j Spicer CD, Pashuck ET, Stevens MM. Chem. Rev. 2018; 118: 7702
    • 16k Mondal S, Chowdhury S. Adv. Synth. Catal. 2018; 360: 1884
    • 16l Malins LR. Curr. Opin. Chem. Biol. 2018; 46: 25
    • 16m Lu X, He S.-J, Cheng W.-M, Shi J. Chin. Chem. Lett. 2018; 29: 1001
    • 16n Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Angew. Chem. Int. Ed. 2018; 57: 14700

      For recent reviews on the application of radical intermediates in complex molecule synthesis, see:
    • 17a Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
    • 17b Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
    • 17c Plesniak MP, Huang H.-M, Procter DJ. Nat. Rev. Chem. 2017; 1: 0077
    • 17d Hung K, Hu X, Maimone TJ. Nat. Prod. Rep. 2018; 35: 174
    • 17e Romero KJ, Galliher MS, Pratt DA, Stephenson CR. J. Chem. Soc. Rev. 2018; 47: 7851
    • 17f Smith JM, Harwood SJ, Baran PS. Acc. Chem. Res. 2018; 51: 1807
  • 18 For a discussion of the basic principles of radical reactions, see: Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58

    • For selected recent reviews on visible light photoredox catalysis, see:
    • 19a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 19b Meggers E. Chem. Commun. 2015; 51: 3290
    • 19c Kärkäs MD, Porco JA. Jr, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
    • 19d Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 19e Kärkäs MD. ACS Catal. 2017; 7: 4999
    • 19f Larsen CB, Wenger OS. Chem. Eur. J. 2018; 24: 2039
    • 19g Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 19h Koike T, Akita M. Chem 2018; 4: 409
    • 19i Silvi M, Melchiorre P. Nature 2018; 554: 41
    • 19j Wang C.-S, Dixneuf PH, Soulé J.-F. Chem. Rev. 2018; 118: 7532
    • 19k Zhao Y, Lv Y, Xia W. Chem Rec. 2019; 19: 424
  • 20 For a review on visible-light-induced photochemical reactions involving energy transfer pathways, see: Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 1586

    • For reviews on the applications of visible light photoredox catalysis in the synthesis of pharmaceutically relevant compounds, see:
    • 21a Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
    • 21b Bogdos MK, Pinard E, Murphy JA. Beilstein J. Org. Chem. 2018; 14: 2035

      For reviews on the photophysical properties of photoredox catalysts, see:
    • 22a Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A. Coord. Chem. Rev. 1988; 84: 85
    • 22b Scholes GD. Annu. Rev. Phys. Chem. 2003; 54: 57
    • 22c Campagna S, Puntoriero F, Nastasi F, Bergamini G, Balzani V. Top. Curr. Chem. 2007; 280: 117
    • 22d Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 22e Arias-Rotondo DM, McCusker JK. Chem. Soc. Rev. 2016; 45: 5803
  • 23 For a discussion on the mechanistic aspects of photocatalysis, see: Buzzetti L, Crisenza GE. M, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 3730
  • 24 During the preparation of this manuscript, Noël and Bottecchia published a review article on photocatalytic methodologies for the modification of single amino acids, peptides, and proteins. Bottecchia C, Noël T. Chem. Eur. J. 2019; 25: 26
  • 25 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA. Jr, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
  • 26 Tinker LL, Bernhard S. Inorg. Chem. 2009; 48: 10507
  • 27 Singh A, Teegardin K, Kelly M, Prasad KS, Krishnan S, Weaver JD. J. Organomet. Chem. 2015; 776: 51
  • 28 Lu C, Lin W, Wang W, Han Z, Yao S, Lin N. Phys. Chem. Chem. Phys. 2000; 2: 329
  • 29 Koziol J. Photochem. Photobiol. 1966; 5: 41

    • For recent reviews on transition-metal-catalyzed cross-couplings, see:
    • 30a Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
    • 30b Bariwal J, Van der Eycken E. Chem. Soc. Rev 2013; 42: 9283
    • 30c Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 30d Cornella J, Zarate C, Martin R. Chem. Soc. Rev. 2014; 43: 8081
    • 30e Knappke CE. I, Grupe S, Gärtner D, Corpet M, Gosmini C, von Wangelin AJ. Chem. Eur. J. 2014; 20: 6828
    • 30f Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
    • 30g Gildner PG, Colacot TJ. Organometallics 2015; 34: 5497
    • 30h Ananikov VP. ACS Catal. 2015; 5: 1964
    • 30i Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 30j Tobisu M, Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 30k Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 30l Choi J, Fu GC. Science 2017; 356: eaaf7230
    • 30m Hazari N, Melvin PR, Beromi MM. Nat. Rev. Chem. 2017; 1: 0025
    • 30n Lucas EL, Jarvo ER. Nat. Rev. Chem. 2017; 1: 0065
    • 30o Zhao K, Shen L, Shen Z.-L, Loh T.-P. Chem. Soc. Rev. 2017; 46: 586
    • 30p Lavoie CM, Stradiotto M. ACS Catal. 2018; 8: 7228
    • 30q Derosa J, Tran VT, van der Puyl VA, Engle KM. Aldrichimica Acta 2018; 51: 21
    • 30r Peng J.-B, Wu F.-P, Wu X.-F. Chem. Rev. 2019; 119: 2090

      For reviews on decarboxylative coupling reactions, see:
    • 31a Rodríguez N, Goossen LJ. Chem. Soc. Rev. 2011; 40: 5030
    • 31b Weaver JD, Recio AIII, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
    • 31c Shang R, Liu L. Sci. China: Chem. 2011; 54: 1670
    • 31d Cornella J, Larrosa I. Synthesis 2012; 44: 653
    • 31e Dzik WI, Lange PP, Gooßen LJ. Chem. Sci. 2012; 3: 2671
    • 31f Wang Z.-L. Adv. Synth. Catal. 2013; 355: 2745
    • 31g Borah AJ, Yan G. Org. Biomol. Chem. 2015; 13: 8094
    • 31h Wei Y, Hu P, Zhang M, Su W. Chem. Rev. 2017; 117: 8864
    • 31i Patra T, Maiti D. Chem. Eur. J. 2017; 23: 7382
    • 31j Zhang T, Wang N.-X, Xing Y. J. Org. Chem. 2018; 83: 7559
    • 31k Schwarz J, König B. Green Chem. 2018; 20: 323
  • 32 For a review on transition-metal-free decarboxylative alkylation reactions, see: Liu P, Zhang G, Sun P. Org. Biomol. Chem. 2016; 14: 10763
    • 33a Kolbe H. Ann. Chem. Pharm. 1848; 64: 339
    • 33b Kolbe H. Ann. Chem. Pharm. 1849; 69: 257
    • 34a Borodine A. Justus Liebigs Ann. Chem. 1861; 119: 121
    • 34b Hunsdiecker H, Hunsdiecker C. Ber. Dtsch. Chem. Ges. B 1942; 75: 291
    • 35a Barton DH. R, Crich D, Motherwell WB. J. Chem. Soc., Chem. Commun. 1983; 939
    • 35b Barton DH. R, Crich D, Motherwell WB. Tetrahedron Lett. 1983; 24: 4979
    • 35c Barton DH. R, Crich D, Kretzschmar G. Tetrahedron Lett. 1984; 25: 1055
    • 35d Barton DH. R, Bridon D, Zard SZ. Tetrahedron Lett. 1984; 25: 5777
    • 35e Barton DH. R, Crich D, Motherwell WB. Tetrahedron 1985; 41: 3901

      For reviews on visible-light-mediated decarboxylative functionalizations, see:
    • 36a Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 36b Huang H, Jia K, Chen Y. ACS Catal. 2016; 6: 4983
    • 36c Jin Y, Fu H. Asian J. Org. Chem. 2017; 6: 368
    • 36d Schwarz J. Phys. Sci. Rev. 2018; 3: 20170186
  • 37 For approaches to radical decarboxylative C–C bond formation, see: Li Y, Ge L, Muhammad MT, Bao H. Synthesis 2017; 49: 5263

    • For pioneering studies on photosensitized decarboxylation of N-hydroxyphthalimide (NHPI) based esters, see:
    • 38a Okada K, Okamoto K, Oda M. J. Am. Chem. Soc. 1988; 110: 8736
    • 38b Okada K, Okamoto K, Oda M. J. Chem. Soc., Chem. Commun. 1989; 1636
    • 38c Okada K, Okamoto K, Morita N, Okubo K, Oda M. J. Am. Chem. Soc. 1991; 113: 9401
    • 38d Okada K, Okubo K, Morita N, Oda M. Tetrahedron Lett. 1992; 33: 7377
    • 38e Okada K, Okubo K, Morita N, Oda M. Chem. Lett. 1993; 22: 2021
  • 39 Schnermann MJ, Overman LE. Angew. Chem. Int. Ed. 2012; 51: 9576
  • 40 Müller DS, Untiedt NL, Dieskau AP, Lackner GL, Overman LE. J. Am. Chem. Soc. 2015; 137: 660
  • 41 Liu X.-G, Zhou C.-J, Lin E, Han X.-L, Zhang S.-S, Li Q, Wang H. Angew. Chem. Int. Ed. 2018; 57: 13096
  • 42 Xue W, Oestreich M. Angew. Chem. Int. Ed. 2017; 56: 11649
  • 43 Wang J, Shang M, Lundberg H, Feu KS, Hecker SJ, Qin T, Blackmond DG, Baran PS. ACS Catal. 2018; 8: 9537
  • 44 Toriyama F, Cornella J, Wimmer L, Chen T.-G, Dixon DD, Creech G, Baran PS. J. Am. Chem. Soc. 2016; 138: 11132
  • 45 Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan C.-M, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
  • 46 Huihui KM. M, Caputo JA, Melchor Z, Olivares AM, Spiewak AM, Johnson KA, DiBenedetto TA, Kim S, Ackerman LK. G, Weix DJ. J. Am. Chem. Soc. 2016; 138: 5016
  • 47 Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
  • 48 Wang J, Qin T, Chen T.-G, Wimmer L, Edwards JT, Cornella J, Vokits B, Shaw SA, Baran PS. Angew. Chem. Int. Ed. 2016; 55: 9676
  • 49 Qin T, Malins LR, Edwards JT, Merchant RR, Novak AJ. E, Zhong JZ, Mills RB, Yan M, Yuan C, Eastgate MD, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 260
  • 50 Wang J, Lundberg H, Asai S, Martín-Acosta P, Chen JS, Brown S, Farrell W, Dushin RG, O’Donnell CJ, Ratnayake AS, Richardson P, Liu Z, Qin T, Blackmond DG, Baran PS. Proc. Natl. Acad. Sci. U.S.A. 2018; 115: E6404
  • 51 For a review on the use of N-(acyloxy)phthalimides as redox-active esters in cross-coupling reactions, see: Murarka S. Adv. Synth. Catal. 2018; 360: 1735
  • 52 For a review on the use of N-(acyloxy)phthalimides as precursors to imidyl and alkyl radicals, see: Mumtaz S, Robertson MJ, Oelgemöller M. Aust. J. Chem. 2018; 71: 634
  • 53 Schwarz J, König B. Green Chem. 2016; 18: 4743
  • 54 Yang J, Zhang J, Qi L, Hu C, Chen Y. Chem. Commun. 2015; 51: 5275
  • 55 Zhang J.-J, Yang J.-C, Guo L.-N, Duan X.-H. Chem. Eur. J. 2017; 23: 10259
  • 56 Xu K, Tan Z, Zhang H, Liu J, Zhang S, Wang Z. Chem. Commun. 2017; 53: 10719
  • 57 Zheng C, Wang Y, Xu Y, Chen Z, Chen G, Liang SH. Org. Lett. 2018; 20: 4824
  • 58 Kong W, Yu C, An H, Song Q. Org. Lett. 2018; 20: 349
  • 59 Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science 2017; 357: 283
  • 60 Candish L, Teders M, Glorius F. J. Am. Chem. Soc. 2017; 139: 7440
  • 61 Jiang M, Jin Y, Yang H, Fu H. Sci. Rep. 2016; 6: 26161
  • 62 Jiang M, Yang H, Fu H. Org. Lett. 2016; 18: 1968
  • 63 Jin Y, Yang H, Fu H. Chem. Commun. 2016; 52: 12909
  • 64 Jin Y, Yang H, Fu H. Org. Lett. 2016; 18: 6400
  • 65 Leeson PD, Springthorpe B. Nat. Rev. Drug Discovery 2007; 6: 881
  • 66 Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
  • 67 Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Org. Biomol. Chem. 2016; 14: 6611
  • 68 Jin Y, Jiang M, Wang H, Fu H. Sci. Rep. 2016; 6: 20068
  • 69 For a related visible-light-promoted decarboxylative approach to substituted phenanthridines, see: Yang J.-C, Zhang J.-Y, Zhang J.-J, Duan X.-H, Guo L.-N. J. Org. Chem. 2018; 83: 1598
  • 70 Proctor RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419

    • For related reports on redox-neutral Minisci-type alkylation, see:
    • 71a Cheng W.-M, Shang R, Fu M.-C, Fu Y. Chem. Eur. J. 2017; 23: 2537
    • 71b Kammer LM, Rahman A, Opatz T. Molecules 2018; 23: 764
  • 72 Miyake Y, Nakajima K, Nishibayashi Y. Chem. Commun. 2013; 49: 7854
  • 73 Chen L, Chao CS, Pan Y, Dong S, Teo YC, Wang J, Tan C.-H. Org. Biomol. Chem. 2013; 11: 5922
  • 74 Chinzei T, Miyazawa K, Yasu Y, Koike T, Akita M. RSC Adv. 2015; 5: 21297
  • 75 Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
  • 76 Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
  • 77 Noble A, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
  • 78 For an example of decarboxylative fluorination with a phthalimide-protected α-amino acid, see: Ventre S, Petronijevic FR, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 5654
  • 79 Inuki S, Sato K, Fukuyama T, Ryu I, Fujimoto Y. J. Org. Chem. 2017; 82: 1248
  • 80 Millet A, Lefebvre Q, Rueping M. Chem. Eur. J. 2016; 22: 13464
  • 81 Li J, Lefebvre Q, Yang H, Zhao Y, Fu H. Chem. Commun. 2017; 53: 10299

    • For discussions on persistent radicals, see:
    • 82a Griller D, Ingold KU. Acc. Chem. Res. 1976; 9: 13
    • 82b Fischer H. Chem. Rev. 2001; 101: 3581
    • 82c Studer A. Chem. Eur. J. 2001; 7: 1159
    • 82d Studer A. Chem. Soc. Rev. 2004; 33: 267
    • 82e Focsaneanu K.-S, Scaiano JC. Helv. Chim. Acta 2006; 89: 2473
  • 83 Duan Y, Zhang M, Ruzi R, Wu Z, Zhu C. Org. Chem. Front. 2017; 4: 525
  • 84 Yin Y, Dai Y, Jia H, Li J, Bu L, Qiao B, Zhao X, Jiang Z. J. Am. Chem. Soc. 2018; 140: 6083
  • 85 Liu Y, Liu X, Li J, Zhao X, Qiao B, Jiang Z. Chem. Sci. 2018; 9: 8094
  • 86 Li J, Kong M, Qiao B, Lee R, Zhao X, Jiang Z. Nat. Commun. 2018; 9: 2445
  • 87 Shao T, Yin Y, Lee R, Zhao X, Chai G, Jiang Z. Adv. Synth. Catal. 2018; 360: 1754
  • 88 Cassani C, Bergonzini G, Wallentin C.-J. Org. Lett. 2014; 16: 4228
  • 89 Garza-Sanchez RA, Tlahuext-Aca A, Tavakoli G, Glorius F. ACS Catal. 2017; 7: 4057
  • 90 Liu Y, Dong X, Deng G, Zhou L. Sci. China: Chem. 2016; 59: 199

    • For selected recent reviews on the synthetic applications of hypervalent iodine reagents, see:
    • 91a Berthiol F. Synthesis 2015; 47: 587
    • 91b Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 91c Kohlhepp SV, Gulder T. Chem. Soc. Rev. 2016; 45: 6270
    • 91d Sousa e Silva FC, Tierno AF, Wengryniuk SE. Molecules 2017; 22: 780
    • 91e Muñiz K. Acc. Chem. Res. 2018; 51: 1507
    • 91f Li X, Chen P, Liu G. Beilstein J. Org. Chem. 2018; 14: 1813
    • 91g Wang M, Chen S, Jiang X. Chem. Asian J. 2018; 13: 2195
    • 91h Elsherbini M, Wirth T. Chem. Eur. J. 2018; 24: 13399
  • 92 For a review on hypervalent iodine(III) reagents in radical chemistry, see: Wang X, Studer A. Acc. Chem. Res. 2017; 50: 1712
  • 93 Huang H, Zhang G, Gong L, Zhang S, Chen Y. J. Am. Chem. Soc. 2014; 136: 2280
  • 94 Zhou Q.-Q, Guo W, Ding W, Wu X, Chen X, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 11196
  • 95 Le Vaillant F, Courant T, Waser J. Angew. Chem. Int. Ed. 2015; 54: 11200
  • 96 Le Vaillant F, Wodrich MD, Waser J. Chem. Sci. 2017; 8: 1790
  • 97 Le Vaillant F, Waser J. Chimia 2017; 71: 226

    • For reviews on dual catalysis involving the merger of metal and photoredox catalysis, see:
    • 98a Levin MD, Kim S, Toste FD. ACS Cent. Sci. 2016; 2: 293
    • 98b Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 98c Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 98d Hopkinson MN, Tlahuext-Aca A, Glorius F. Acc. Chem. Res. 2016; 49: 2261
    • 98e Tóth BL, Tischler O, Novák Z. Tetrahedron Lett. 2016; 57: 4505
    • 98f Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
    • 98g Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 98h McLean EB, Lee A.-L. Tetrahedron 2018; 74: 4881
  • 99 Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
  • 100 The Molander group concomitantly disclosed a visible-light-mediated, single-electron transfer-based strategy for cross-coupling of potassium organotrifluoroborates with aryl bromides by photoredox/nickel dual catalysis: Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
  • 101 Decarboxylative cross-coupling of N-arylglycines with aryl and vinyl pseudohalides through combined photoredox and nickel catalysis has also been described: Fan L, Jia J, Hou H, Lefebvre Q, Rueping M. Chem. Eur. J. 2016; 22: 16437
  • 102 Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 1832
  • 103 Enantioselective desymmetrization of cyclic meso-anhydrides using dual photoredox/nickel catalysis has also been described: Stache EE, Rovis T, Doyle AG. Angew. Chem. Int. Ed. 2017; 56: 3679
  • 104 Noble A, McCarver SJ, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 624
  • 105 Johnston CP, Smith RT, Allmendinger S, MacMillan DW. C. Nature 2016; 536: 322
  • 106 Le C, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 11938
  • 107 Luo J, Zhang J. ACS Catal. 2016; 6: 873
  • 108 Hsieh H.-W, Coley CW, Baumgartner LM, Jensen KF, Robinson RI. Org. Process Res. Dev. 2018; 22: 542
  • 109 Abdiaj I, Alcázar J. Bioorg. Med. Chem. 2017; 25: 6190
  • 110 Oderinde MS, Varela-Alvarez A, Aquila B, Robbins DW, Johannes JW. J. Org. Chem. 2015; 80: 7642
  • 111 Heitz DR, Tellis JC, Molander GA. J. Am. Chem. Soc. 2016; 138: 12715
  • 112 Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
  • 113 Welin ER, Le C, Arias-Rotondo DM, McCusker JK, MacMillan DW. C. Science 2017; 355: 380
  • 114 Reaction development revealed that the use of photocatalysts with increasing triplet energy provided higher yields of the O-aryl ester product while photocatalysts with increasing oxidation power provided lower yields. These findings support an energy transfer process and disfavor a single-electron transfer mechanism that would involve formation of NiIII from NiII. Furthermore, radical decarboxylation is not favored because of the relatively low oxidation potential of the IrIII*/IrII redox couple for the Ir(ppy)3 photocatalyst.
  • 115 Shaw MH, Shurtleff VW, Terrett JA, Cuthbertson JD, MacMillan DW. C. Science 2016; 352: 1304
  • 116 For a related report concerning the direct functionalization of C(sp3)–H bonds of N-arylamines by acyl electrophiles, see: Joe CL, Doyle AG. Angew. Chem. Int. Ed. 2016; 55: 4040
  • 117 Lang SB, O’Nele KM, Douglas JT, Tunge JA. Chem. Eur. J. 2015; 21: 18589
  • 118 For a related report, see: Lang SB, O’Nele KM, Tunge JA. J. Am. Chem. Soc. 2014; 136: 13606
  • 119 For synthesis of enamides and enecarbamates directly from amino acids, see: Cartwright KC, Tunge JA. ACS Catal. 2018; 8: 11801
  • 120 Zhang H, Zhang P, Jiang M, Yang H, Fu H. Org. Lett. 2017; 19: 1016
  • 121 Mao R, Frey A, Balon J, Hu X. Nat. Catal. 2018; 1: 120
  • 122 Mao R, Balon J, Hu X. Angew. Chem. Int. Ed. 2018; 57: 9501
  • 123 Mao R, Balon J, Hu X. Angew. Chem. Int. Ed. 2018; 57: 13624

    • For reviews on hydrogen atom transfer (HAT), see:
    • 124a Robertson J, Pillai J, Lush RK. Chem. Soc. Rev. 2001; 30: 94
    • 124b Čeković Ž. J. Serb. Chem. Soc. 2005; 70: 287
    • 124c Nechab M, Mondal S, Bertrand MP. Chem. Eur. J. 2014; 20: 16034
    • 124d Chiba S, Chen H. Org. Biomol. Chem. 2014; 12: 4051
    • 124e Salamone M, Bietti M. Acc. Chem. Res. 2015; 48: 2895
    • 124f Li W, Xu W, Xie J, Yu S, Zhu C. Chem. Soc. Rev. 2018; 47: 654

      For reviews on light-mediated reactions involving hydrogen atom transfer (HAT), see:
    • 125a Capaldo L, Ravelli D. Eur. J. Org. Chem. 2017; 2056
    • 125b Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
  • 126 Romero NA, Margrey KA, Tay NE, Nicewicz DA. Science 2015; 349: 1326
  • 127 A predictive model for site selectivity has also been described: Margrey KA, McManus JB, Bonazzi S, Zecri F, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 11288
  • 128 For a related approach using cyanide as the nucleophile, see: McManus JB, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 2880
  • 129 Margrey KA, Levens A, Nicewicz DA. Angew. Chem. Int. Ed. 2017; 56: 15644
  • 130 Tay NE. S, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 16100
  • 131 Basch CH, Liao J, Xu J, Piane JJ, Watson MP. J. Am. Chem. Soc. 2017; 139: 5313
  • 132 Katritzky AR, Gruntz U, Kenny DH, Rezende MC, Sheikh H. J. Chem. Soc., Perkin Trans. 1 1979; 430
  • 133 Klauck FJ. R, James MJ, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 12336
  • 134 Chalker JM, Bernardes GJ. L, Lin YA, Davis BG. Chem. Asian J. 2009; 4: 630
  • 135 Tyson EL, Niemeyer ZL, Yoon TP. J. Org. Chem. 2014; 79: 1427
  • 136 Rossolini T, Leitch JA, Grainger R, Dixon DJ. Org. Lett. 2018; 20: 6794
  • 137 Aycock RA, Pratt CJ, Jui NT. ACS Catal. 2018; 8: 9115
  • 138 de Bruijn AD, Roelfes G. Chem. Eur. J. 2018; 24: 11314
  • 139 Yoshimi Y, Itou T, Hatanaka M. Chem. Commun. 2007; 5244
  • 140 Yoshimi Y, Masuda M, Mizunashi T, Nishikawa K, Maeda K, Koshida N, Itou T, Morita T, Hatanaka M. Org. Lett. 2009; 11: 4652
  • 141 Yoshimi Y, Kobayashi K, Kamakura H, Nishikawa K, Haga Y, Maeda K, Morita T, Itou T, Okada Y, Hatanaka M. Tetrahedron Lett. 2010; 51: 2332
  • 142 Itou T, Yoshimi Y, Nishikawa K, Morita T, Okada Y, Ichinose N, Hatanaka M. Chem. Commun. 2010; 46: 6177
  • 143 Yoshimi Y, Hayashi S, Nishikawa K, Haga Y, Maeda K, Morita T, Itou T, Okada Y, Ichinose N, Hatanaka M. Molecules 2010; 15: 2623
  • 144 Yoshimi Y, Washida S, Okita Y, Nishikawa K, Maeda K, Hayashi S, Morita T. Tetrahedron Lett. 2013; 54: 4324
  • 145 Yoshimi Y, Hayashi S, Nishikawa K, Okita Y, Maeda K, Morita T, Itou T. Res. Chem. Intermed. 2013; 39: 397
  • 146 Maeda K, Saito H, Osaka K, Nishikawa K, Sugie M, Morita T, Takahashi I, Yoshimi Y. Tetrahedron 2015; 71: 1117
  • 147 Saito H, Kanetake T, Osaka K, Maeda K, Morita T, Yoshimi Y. Tetrahedron Lett. 2015; 56: 1645
  • 148 Osaka K, Sugie M, Yamawaki M, Morita T, Yoshimi Y. J. Photochem. Photobiol. A: Chem. 2016; 317: 50
  • 149 Yoshimi Y, Nishio A, Hayashi M, Morita T. J. Photochem. Photobiol. A: Chem. 2016; 331: 17
  • 150 Yamawaki M, Ukai A, Kamiya Y, Sugihara S, Sakai M, Yoshimi Y. ACS Macro Lett. 2017; 6: 381
  • 151 Yamamoto T, Iwasaki T, Morita T, Yoshimi Y. J. Org. Chem. 2018; 83: 3702
  • 152 For a review on photoinduced electron transfer-promoted decarboxylative radical manifolds using the phenanthrene/dicyanobenzene system, see: Yoshimi Y. J. Photochem. Photobiol. A: Chem. 2017; 342: 116
  • 153 Bloom S, Liu C, Kölmel DK, Qiao JX, Zhang Y, Poss MA, Ewing WR, MacMillan DW. C. Nat. Chem. 2018; 10: 205
  • 154 McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller MM, MacMillan DW. C. Angew. Chem. Int. Ed. 2017; 56: 728

    • For reports on the synthesis of macrocyclic peptides involving photochemical decarboxylation using UV photolysis, see:
    • 155a Griesbeck AG, Heinrich T, Oelgemöller M, Lex J, Molis A. J. Am. Chem. Soc. 2002; 124: 10972
    • 155b Griesbeck AG, Heinrich T, Oelgemöller M, Molis A, Heidtmann A. Helv. Chim. Acta 2002; 85: 4561
    • 155c Yoon UC, Jin YX, Oh SW, Park CH, Park JH, Campana CF, Cai X, Duesler EN, Mariano PS. J. Am. Chem. Soc. 2003; 125: 10664
  • 156 Ohshiro Y, Nakajima E, Goto Y, Fuse S, Takahashi T, Doi T, Suga H. ChemBioChem 2011; 12: 1183
  • 157 Witt D. Synthesis 2008; 2491
    • 158a Dhakshinamoorthy A, Alvaro M, Garcia H. Chem. Commun. 2010; 46: 6476
    • 158b Scharf DH, Groll M, Habel A, Heinekamp T, Hertweck C, Brakhage AA, Huber EM. Angew. Chem. Int. Ed. 2014; 53: 2221
  • 159 Talla A, Driessen B, Straathof NJ. W, Milroy L.-G, Brunsveld L, Hessel V, Noël T. Adv. Synth. Catal. 2015; 357: 2180

    • For leading reviews on cysteine bioconjugations, see:
    • 160a Hoyle CE, Bowman CN. Angew. Chem. Int. Ed. 2010; 49: 1540
    • 160b Massi A, Nanni D. Org. Biomol. Chem. 2012; 10: 3791
    • 160c Stenzel MH. ACS Macro Lett. 2013; 2: 14
    • 160d Koniev O, Wagner A. Chem. Soc. Rev. 2015; 44: 5495
    • 160e Gunnoo SB, Madder A. ChemBioChem 2016; 17: 529
    • 160f Akkapeddi P, Azizi S.-A, Freedy AM, Cal PM. S. D, Gois PM. P, Bernardes GJ. L. Chem. Sci. 2016; 7: 2954
  • 161 Bottecchia C, Rubens M, Gunnoo SB, Hessel V, Madder A, Noël T. Angew. Chem. Int. Ed. 2017; 56: 12702

    • For reports on visible-light-induced desulfurization of thiol- and disulfide-containing amino acids and peptides, see:
    • 162a Gao X.-F, Du J.-J, Liu Z, Guo J. Org. Lett. 2016; 18: 1166
    • 162b Lee M, Neukirchen S, Cabrele C, Reiser O. J. Pept. Sci. 2017; 23: 556
  • 163 For an example of visible-light-induced trifluoromethylation and perfluoroalkylation of cysteine residues, see: Bottecchia C, Wei X.-J, Kuijpers KP. L, Hessel V, Noël T. J. Org. Chem. 2016; 81: 7301
  • 164 Vara BA, Li X, Berritt S, Walters CR, Petersson EJ, Molander GA. Chem. Sci. 2018; 9: 336
  • 165 Cheng W.-M, Shang R, Fu Y. ACS Catal. 2017; 7: 907

    • For leading reviews on C–H functionalization, see:
    • 166a Daugulis O, Roane J, Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 166b Segawa Y, Maekawa T, Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
    • 166c Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
    • 166d Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 166e He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 166f Kim D.-S, Park W.-J, Jun C.-H. Chem. Rev. 2017; 117: 8977
    • 166g Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
    • 166h Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 166i Gandeepan P, Ackermann L. Chem 2018; 4: 199
    • 166j Xu Y, Dong G. Chem. Sci. 2018; 9: 1424
  • 167 Le C, Liang Y, Evans RW, Li X, MacMillan DW. C. Nature 2017; 547: 79
  • 168 Yu Y, Zhang L.-K, Buevich AV, Li G, Tang H, Vachal P, Colletti SL, Shi Z.-C. J. Am. Chem. Soc. 2018; 140: 6797
  • 169 For visible-light mediated functionalization of peptides with indoles, see: Zhu S, Rueping M. Chem. Commun. 2012; 48: 11960

    • For reports on functionalization of tyrosine residues, see:
    • 170a Kim K, Fancy DA, Carney D, Kodadek T. J. Am. Chem. Soc. 1999; 121: 11896
    • 170b Sato S, Nakamura H. Angew. Chem. Int. Ed. 2013; 52: 8681
    • 170c Sato S, Morita K, Nakamura H. Bioconjugate Chem. 2015; 26: 250
    • 170d Sato S, Ishii S, Nakamura H. Eur. J. Inorg. Chem. 2017; 4406
    • 170e Ichiishi N, Caldwell JP, Lin M, Zhong W, Zhu X, Streckfuss E, Kim H.-Y, Parish CA, Krska SW. Chem. Sci. 2018; 9: 4168
  • 171 Wang C, Guo M, Qi R, Shang Q, Liu Q, Wang S, Zhao L, Wang R, Xu Z. Angew. Chem. Int. Ed. 2018; 57: 15841
  • 172 For a related report on functionalization of α-amino acid derivatives with concomitant hydrogen evolution, see: Gao X.-W, Meng Q.-Y, Li J.-X, Zhong J.-J, Lei T, Li X.-B, Tung C.-H, Wu L.-Z. ACS Catal. 2015; 5: 2391
  • 173 Wang Y, Li G.-X, Yang G, He G, Chen G. Chem. Sci. 2016; 7: 2679
  • 174 For a related report on late-stage C–H fluorination on unprotected peptides, see: Yuan Z, Nodwell MB, Yang H, Malik N, Merkens H, Bénard F, Martin RE, Schaffer P, Britton R. Angew. Chem. Int. Ed. 2018; 57: 12733
  • 175 Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
  • 176 Kärkäs MD, Matsuura BS, Stephenson CR. J. Science 2015; 349: 1285
  • 177 For a Hofmann–Löffler–Freytag type approach to selective functionalization of isoleucine and related derivatives, see: Reddy LR, Reddy BV. S, Corey EJ. Org. Lett. 2006; 8: 2819
  • 178 Choi GJ, Zhu Q, Miller DC, Gu CJ, Knowles RR. Nature 2016; 539: 268
  • 179 Chu JC. K, Rovis T. Nature 2016; 539: 272
  • 180 Morcillo SP, Dauncey EM, Kim JH, Douglas JJ, Sheikh NS, Leonori D. Angew. Chem. Int. Ed. 2018; 57: 12945
  • 181 For decarboxylative azidation of cyclic amino acids, see: Marcote DC, Street-Jeakings R, Dauncey E, Douglas JJ, Ruffoni A, Leonori D. Org. Biomol. Chem. 2019; 17: 1839
  • 182 Lee H, Boyer NC, Deng Q, Kim H.-Y, Sawyer TK, Sciammetta N. Chem. Sci. 2019; 10: 5073