Synlett 2020; 31(03): 230-236
DOI: 10.1055/s-0037-1611848
cluster
© Georg Thieme Verlag Stuttgart · New York

Synthetic Utility of One-Pot Chemoenzymatic Reaction Sequences

Tyler J. Doyon
a   Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
b   Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
,
a   Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
b   Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
c   Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA   Email: arhardin@umich.edu
› Author Affiliations
We thank the University of Michigan Life Sciences Institute and Department of Chemistry for support.
Further Information

Publication History

Received: 20 April 2019

Accepted after revision: 13 May 2019

Publication Date:
06 June 2019 (online)


Published as part of the Cluster Biocatalysis

Abstract

In recent years, there has been a rapid and sustained increase in the development and use of one-pot chemoenzymatic reaction processes for the efficient synthesis of high-value molecules. This strategy can provide a number of advantages over traditional synthetic methods, including high levels of selectivity in reactions, mild and sustainable reaction conditions, and the ability to rapidly build molecular complexity in a single reaction vessel. Here, we present several examples of chemoenzymatic one-pot reaction sequences that demonstrate the diversity of transformations that can be incorporated in these processes.

 
  • References and Notes

  • 1 García-Junceda E, Lavandera I, Rother D, Schrittwieser JH. J. Mol. Catal. B: Enzym. 2015; 114: 1
  • 2 Ricca E, Brucher B, Schrittwieser JH. Adv. Synth. Catal. 2011; 353: 2239
  • 3 Sperl JM, Sieber V. ACS Catal. 2018; 8: 2385
  • 4 Sun H, Zhang H, Ang EL, Zhao H. Bioorg. Med. Chem. 2018; 26: 1275
  • 5 Patel RN. Expert Opin. Drug Discov. 2008; 3: 187
  • 6 Li F, Zhang X, Renata H. Curr. Opin. Chem. Biol. 2019; 49: 25
  • 7 Baer K, Krausser M, Burda E, Hummel W, Berkessel A, Groger H. Angew. Chem. Int. Ed. 2009; 48: 9355
  • 8 Binder JT, Kirsch SF. Chem. Commun. 2007; (40) 4164
  • 9 Kumar P, Tripathi D, Sharma BM, Dwivedi N. Org. Biomol. Chem. 2017; 15: 733
  • 10 Sonoike S, Itakura T, Kitamura M, Aoki S. Chem. Asian. J. 2012; 7: 64
  • 11 Carr R, Alexeeva M, Dawson MJ, Gotor-Fernández V, Humphrey CE, Turner NJ. ChemBioChem. 2005; 6: 637
  • 12 Dunsmore CJ, Carr R, Fleming T, Turner NJ. J. Am. Chem. Soc. 2006; 128: 2224
  • 13 Ghislieri D, Houghton D, Green AP, Willies SC, Turner NJ. ACS Catal. 2013; 3: 2869
  • 14 Zawodny W, Marshall JR, Finnigan JD, Turner NJ, Clayden J, Montgomery SL. J. Am. Chem. Soc. 2018; 140: 17872–17877
  • 15 Zwick CR. III, Renata H. J. Am. Chem. Soc. 2018; 140: 1165
  • 16 Murphy AC, Mitova MI, Blunt JW, Munro MH. G. J. Nat. Prod. 2008; 71: 806
  • 17 Burda E, Hummel W, Groger H. Angew. Chem. Int. Ed. 2008; 47: 9551
  • 18 Denard CA, Huang H, Bartlett MJ, Lu L, Tan Y, Zhao H, Hartwig JF. Angew. Chem. Int. Ed. 2014; 53: 465
  • 19 Denard CA, Bartlett MJ, Wang Y, Lu L, Hartwig JF, Zhao H. ACS Catal. 2015; 5: 3817
  • 20 Scalacci N, Black GW, Mattedi G, Brown NL, Turner NJ, Castagnolo D. ACS Catal. 2017; 7: 1295
  • 21 Denard CA, Hartwig JF, Zhao H. ACS Catal. 2013; 3: 2856
  • 22 Litman ZC, Wang Y, Zhao H, Hartwig JF. Nature 2018; 560: 355
  • 23 Wang Y, Bartlett MJ, Denard CA, Hartwig JF, Zhao H. ACS Catal. 2017; 7: 2548
  • 24 Nicolaou KC, Mathison CJ, Montagnon T. Angew. Chem. Int. Ed. 2003; 42: 4077
  • 25 Zhang E, Tian H, Xu S, Yu X, Xu Q. Org. Lett. 2013; 15: 2704
  • 26 Bulger PG, Bagal SK, Marquez R. Nat. Prod. Rep. 2008; 25: 254
  • 27 Fan J, Liao G, Kindinger F, Ludwig-Radtke L, Yin WB, Li SM. J. Am. Chem. Soc. 2019; 141: 4221–4225
  • 28 Bai WJ, David JG, Feng ZG, Weaver MG, Wu KL, Pettus TR. Acc. Chem. Res. 2014; 47: 3655
  • 29 Singh MS, Nagaraju A, Anand N, Chowdhury S. RSC Adv. 2014; 4: 55924
  • 30 Doyon T. J., Perkins J. C., Baker Dockrey S. A., Skinner K. C., Zimmerman P. M., Narayan A. R. H.; ChemRxiv; 2019, DOI: 10.1021/acschembio.9b00123.
  • 31 Fahad AA, Abood A, Fisch KM, Osipow A, Davison J, Avramovic M, Butts CP, Piel J, Simpson TJ, Cox RJ. Chem. Sci. 2014; 5: 523
  • 32 Bosset C, Coffinier R, Peixoto PA, El Assal M, Miqueu K, Sotiropoulos J.-M, Pouységu L, Quideau S. Angew. Chem. Int. Ed. 2014; 53: 9860
  • 33 Volp KA, Harned AM. Chem. Commun. 2013; 49: 3001
  • 34 Zhu J, Grigoriadis NP, Lee JP, Porco JA. J. Am. Chem. Soc. 2005; 127: 9342
  • 35 Baker Dockrey SA, Lukowski AL, Becker MR, Narayan AR. H. Nat. Chem. 2017; 10: 119
  • 36 Sib A, Gulder TA. M. Angew. Chem.. Int. Ed. 2017; 56: 12888
  • 37 Sib A, Gulder TA. M. Angew. Chem. Int. Ed. 2018; 57: 14650