Synthesis 2019; 51(17): 3221-3230
DOI: 10.1055/s-0037-1611835
paper
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of Polysubstituted Imidazoles Based on Pd(OAc)2/Ce(SO4)2/Bi(NO3)3 Trimetallic Cascade of Decarboxylation/Wacker-Type Oxidation/Debus–Radziszewski Reaction

Wei Sun
a   Department of Chemistry, Jinan University, Guangzhou 510632, P. R. of China   Email: tlyq@jnu.edu.cn
,
Mingjuan Zhang
a   Department of Chemistry, Jinan University, Guangzhou 510632, P. R. of China   Email: tlyq@jnu.edu.cn
,
Peilang Li
a   Department of Chemistry, Jinan University, Guangzhou 510632, P. R. of China   Email: tlyq@jnu.edu.cn
,
Yiqun Li  *
a   Department of Chemistry, Jinan University, Guangzhou 510632, P. R. of China   Email: tlyq@jnu.edu.cn
b   Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (No. 21372099) for financial support.
Further Information

Publication History

Received: 13 March 2019

Accepted after revision: 25 April 2019

Publication Date:
27 May 2019 (online)


Abstract

A novel and highly efficient one-pot synthesis of polysubstituted imidazoles from α-hydroxyphenylacetic acids, diphenylacetylene, and amines has been achieved by Pd(OAc)2/Ce(SO4)2/Bi(NO3)3 trimetallic catalytic system. A series of control experiments showed that this overall reaction occurs through a one-pot cascade process combining the steps of decarboxylation of α-hydroxyphenylacetic acids, Wacker-type oxidation of diphenylacetylene, and Debus–Radziszewski annulation of aryl aldehydes and benzil generated in situ, as well as amines. This reaction represents a novel multicomponent reaction using α-hydroxyphenylacetic acids and diphenylacetylene as sources of aryl aldehydes and a β-diketone. This process exhibits a broad substrate scope and a good functional group tolerance to assemble the corresponding polysubstituted imidazoles in excellent yields (72–88%) under mild conditions.

Supporting Information

 
  • References

    • 1a Roué M, Domart-Coulon I, Ereskovsky A, Djediat C, Perez T, Bourguet-Kondracki M.-L. J. Nat. Prod. 2010; 73: 1277
    • 1b Morinaka BI, Pawlik JR, Molinski TF, Amaranzoles B.-F. J. Org. Chem. 2010; 75: 2453
    • 1c Tsukamoto S, Kawabata T, Kato H, Ohta T, Rotinsulu H, Mangindaan RE. P, van Soest RW. M, Ukai K, Kobayashi H, Namikoshi M. J. Nat. Prod. 2007; 70: 1658
    • 1d Maier UH, Gundlach H, Zenk MH. Phytochem. 1998; 49: 1791
  • 2 Sisko J. J. Org. Chem. 1998; 63: 4529
  • 3 Takle AK, Brown MJ. B, Davies S, Dean DK, Francis G, Gaiba A, Hird AW, King FD, Lovell PJ, Naylor A, Reith AD, Steadman JG, Wilson DM. Bioorg. Med. Chem. Lett. 2006; 16: 378
  • 4 Chang LL, Sidler KL, Cascieri MA, de Laszlo S, Koch G, Li B, MacCoss M, Mantlo N, O’Keefe S, Pang M, Rolando A, Hagmann WK. Bioorg. Med. Chem. Lett. 2001; 11: 2549
  • 5 Lombardino JG, Wiseman EH. J. Med. Chem. 1974; 17: 1182
  • 6 Wang L, Woods KW, Li Q, Barr KJ, McCroskey RW, Hannick SM, Gherke L, Credo RB, Hui Y.-H, Marsh K, Warner R, Lee JY, Zielinski-Mozng N, Frost D, Rosenberg SH, Sham HL. J. Med. Chem. 2002; 45: 1697
    • 7a Lindberg P, Nordberg P, Alminger T, Brándstróm A, Wallmark B. J. Med. Chem. 1986; 29: 1327
    • 7b Kantevari S, Nair CK. S, Pardhasaradhi M. J. Heterocycl. Chem. 2006; 43: 1353
    • 7c Abrahams SL, Hazen RJ, Batson AG, Phillips AP. Pharmacol. Exp. Ther. 1989; 249: 359
    • 7d Wolkenberg SE, Wisnoski DD, Leister WH, Wang Y, Zhao Z, Lindsley CW. Org. Lett. 2004; 6: 1453
    • 10a Liu X, Wang D, Chen Y, Tang D, Chen B. Adv. Synth. Catal. 2013; 355: 2798
    • 10b Zhang X, Wu P, Fu Y, Zhang F, Chen B. Tetrahedron Lett. 2017; 58: 870
    • 10c Mitra S, Bagdi AK, Majee A, Hajra A. Tetrahedron Lett. 2013; 54: 4982
    • 10d Li J, Neuville L. Org. Lett. 2013; 15: 1752
    • 12a Jia C, Piao D, Oyamada J, Lu W, Kitamura T, Fujiwara Y. Science 2000; 287: 1992
    • 12b Thikekar TU, Sun C.-M. Adv. Synth. Catal. 2017; 359: 3388
    • 13a Favier I, Dunãch E. Tetrahedron 2003; 59: 1823
    • 13b Xue J.-W, Zeng M, Hou X, Chen Z, Yin G. Asian J. Org. Chem. 2018; 7: 212
    • 13c Mori S, Takubo M, Yanase T, Maegawa T, Monguchi Y, Sajiki H. Adv. Synth. Catal. 2010; 352: 1630
    • 14a Daw P, Petakamsetty R, Sarbajna A, Laha S, Ramapanicker R, Bera JK. J. Am. Chem. Soc. 2014; 136: 13987
    • 14b Tingoli M, Mazzella M, Panunzi B, Tuzi A. Eur. J. Org. Chem. 2011; 399
    • 14c Min H, Palani T, Park K, Hwang J, Lee S. J. Org. Chem. 2014; 79: 6279
    • 14d Gao A, Yang F, Li J, Wu Y. Tetrahedron 2012; 68: 4950
  • 15 Nejatianfar M, Akhlaghinia B, Jahanshahi R. Appl. Organomet. Chem. 2018; 32: e4095 ; DOI: 10.1002/aoc.4095
  • 16 Wang D, Li Z, Huang X, Li Y. ChemistrySelect 2016; 1: 664
  • 17 Rostamnia S, Doustkhah E. Synlett 2015; 26: 1345
  • 18 Singh H, Rajput JK. Appl. Organomet. Chem. 2018; 32: e3989 ; DOI: 10.1002/aoc.3989
  • 19 Ray S, Das P, Bhaumik A, Dutta A, Mukhopadhyay C. Appl. Catal., A 2013; 458: 183
  • 20 Waheed M, Ahmed N, Alsharif MA, Alahmdi MI, Mukhtar S. ChemistrySelect 2017; 2: 7946
  • 21 Wan Y, Liu G, Zhao L, Wang H, Huang S, Chen L, Wu H. J. Heterocycl. Chem. 2014; 51: 713
  • 22 Kalkhorani NM, Heravi MM. J. Chem. 2013; DOI: Article ID 645801; 10.1155/2013/645801.
  • 23 Sadeghi B, Mirjalili BB. F, Hashemi MM. Tetrahedron Lett. 2008; 49: 2575