Synthesis 2019; 51(17): 3250-3258
DOI: 10.1055/s-0037-1611830
paper
© Georg Thieme Verlag Stuttgart · New York

Rhodium-Catalyzed Double Isocyanide Insertion via a Vinylcarbodiimide Intermediate for the Synthesis of 2H-Pyrrol-2-imines

Yunlong Wang
a   Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China   Email: hyzhao@imu.edu.cn
,
Zongyang Li
b   Department of Applied Chemistry, China Agricultural University, West Yuanmingyuan Rd. 2, Beijing 100193, P. R. of China   Email: zhangzhh@cau.edu.cn
,
Haiying Zhao*
a   Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China   Email: hyzhao@imu.edu.cn
,
Zhenhua Zhang*
b   Department of Applied Chemistry, China Agricultural University, West Yuanmingyuan Rd. 2, Beijing 100193, P. R. of China   Email: zhangzhh@cau.edu.cn
› Author Affiliations
This project is supported by the Inner Mongolia University (Enhancing Comprehensive Strength Foundation, Grant No. 10000-1601010981), and National Natural Science Foundation of China (Grants No. 21672256 and 21562032).
Further Information

Publication History

Received: 29 March 2019

Accepted after revision: 24 April 2019

Publication Date:
21 May 2019 (online)


Abstract

2H-Pyrrol-2-imine is an important structural motif exhibiting in biologically active compounds and natural products. An efficient rhodium-catalyzed one-pot reaction of one vinyl azide with sequentially with two different isocyanides is reported, which offers an alternative facile access to 3-amino-5-aryl-2H-pyrrol-2-imines bearing various substitution on the nitrogens in good yields. An unstable vinylcarbodiimide is the key intermediate in this cascade reaction.

Supporting Information

 
  • References


    • For examples, see:
    • 1a Furstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
    • 1b Parikh SA, Kantarjian H, Schimmer A, Walsh W, Asatiani E, El-Shami K, Winton E, Verstovsek S. Clin. Lymphoma Myeloma 2010; 10: 285
    • 1c Hernández PI, Moreno D, Javier AA, Torroba T, Pérez-Tomás R, Quesada R. Chem. Commun. 2012; 48: 1556

      For examples, see:
    • 2a Gorman A, Killoran J, O’Shea C, Kenna T, Gallagher WM, O’Shea DF. J. Am. Chem. Soc. 2004; 126: 10619
    • 2b Coskun A, Yilmaz MD, Akkaya EU. Org. Lett. 2007; 9: 607
    • 2c Amin AN, El-Khouly ME, Subbaiyan NK, Zandler ME, Fukuzumi S, D’Souza F. Chem. Commun. 2012; 48: 206
    • 2d Liu S, Shi Z, Xu W, Yang H, Xi N, Liu X, Zhao Q, Huang W. Dyes Pigm. 2014; 103: 145
  • 3 Hu W, Li J, Xu Y, Li J, Wu W, Liu H, Jiang H. Org. Lett. 2017; 19: 678
  • 4 Senadi GC, Lu T.-Y, Dhandabani GK, Wang J.-J. Org. Lett. 2017; 19: 1172
  • 5 Capuano L, Dahm B, Port V, Schnur R, Schramm V. Chem. Ber. 1988; 121: 271

    • For selected reviews, see:
    • 6a Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 6b Bräse S, Banert K. Organic Azides: Syntheses and Applications . Wiley-VCH; Weinheim: 2010
    • 6c Driver TG. Org. Biomol. Chem. 2010; 8: 3831
    • 6d Intrieri D, Zardi P, Caselli A, Gallo E. Chem. Commun. 2014; 50: 11440
    • 6e Shin K, Kim H, Chang S. Acc. Chem. Res. 2015; 48: 1040
    • 7a Cowley RE, Golder MR, Eckert NA, Al-Afyouni MH, Holland PL. Organometallics 2013; 32: 5289
    • 7b Wiese S, Aguila MJ. B, Kogut E, Warren TH. Organometallics 2013; 32: 2300
    • 7c Zhang Z, Li Z, Fu B, Zhang Z. Chem. Commun. 2015; 51: 16312
    • 7d Zhang Z, Xiao F, Huang B, Hu J, Fu B, Zhang Z. Org. Lett. 2016; 18: 908
    • 7e Chen K, Tang XY, Shi M. Chem. Commun. 2016; 52: 1967
    • 7f Zhang Z, Huang B, Qiao G, Zhu L, Xiao F, Chen F, Bin F, Zhang Z. Angew. Chem. Int. Ed. 2017; 56: 4320
    • 7g Gu Z, Liu Y, Wang F, Bao X, Wang S, Ji S. ACS Catal. 2017; 7: 3893
    • 7h Li Z, Huo T, Li L, Feng S, Wang Q, Zhang Z, Pang S, Zhang Z, Wang P, Zhang Z. Org. Lett. 2018; 20: 7762
    • 7i He Y, Yuan C, Shuai L, Xiao Q. Org. Lett. 2019; 21: 185