Synthesis 2019; 51(15): 2984-3000
DOI: 10.1055/s-0037-1611801
paper
© Georg Thieme Verlag Stuttgart · New York

An Unexpected FeCl3/C-Catalyzed β-Stereoselective Glycosylation in the Presence of the C(2)-Benzyl Group

Hong Guo
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
,
Wenshuai Si
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
,
Juan Li
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
,
Guofang Yang
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
,
Tianjun Tang
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
,
Zhongfu Wang
b   School of Life Sciences, Northwest University, Xi’an, 710069, P. R. of China
,
Jie Tang
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
,
a   School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: Jbzhang@chem.ecnu.edu.cn
› Author Affiliations
The project was financially supported by Natural Science Foundation of Shanghai (11ZR1410400) and Open Foundation of East China Normal University (20151043 & 20162015).
Further Information

Publication History

Received: 11 November 2018

Accepted after revision: 25 March 2019

Publication Date:
26 April 2019 (online)


Abstract

An efficient and completely β-stereoselective glycosylation that did not rely on neighboring group participation is described using 2–20 mol% FeCl3/C as the catalyst and benzylated propargyl glycosides as the donors to reach yields up to 96% under mild condition. With an octatomic-ring intermediate at the α-face of FeCl3/C with alkyne of propargyl glycosides, a panel of aglycones comprising aliphatic, alicyclic, unsaturated alcohols, halogenated alcohols, and phenols with different substitution were examined successfully for the exclusive β-stereoselective glycosylation reaction.

Supporting Information

 
  • References

    • 1a Tanaka H, Amaya T, Takahashi T. Tetrahedron Lett. 2003; 44: 3053
    • 1b Han H, Zhang W, Yi YH, Liu BS, Pan MX, Wang XH. Chem. Biodiversity 2010; 7: 1764
    • 1c Liu M, Gan M, Lin S, Zhang Y, Zi J, Song W, Fan X, Liu Y, Yang Y, Shi J. Org. Lett. 2011; 13: 2856
    • 1d Mulani SK, Guh J.-H, Mong K.-KT. Org. Biomol. Chem. 2014; 12: 2926
    • 2a Toshima K, Tatsuta K. Chem. Rev. 1993; 93: 1503
    • 2b Jensen KJ. J. Chem. Soc., Perkin Trans. 1 2002; 2219
    • 2c Demchenko AV. Synlett 2003; 1225
    • 2d Zhu X, Schmidt RR. Angew. Chem. Int. Ed. 2009; 48: 1900
    • 2e Arihara R, Kakita K, Suzuki N, Nakamura S, Hashimoto S. J. Org. Chem. 2015; 80: 4259
    • 3a Fraser-Reid B, Wu Z, Udodong UE, Ottosson H. J. Org. Chem. 1990; 55: 6068
    • 3b Tomono S, Kusumi S, Takahashi D, Toshima K. Tetrahedron Lett. 2011; 52: 2399
    • 3c Yang G, Luo X, Guo H, Wang Q, Zhou J, Huang T, Tang J, Shan J, Zhang J. J. Carbohydr. Chem. 2018; 37: 128
    • 4a Seeberger PH, Eckhardt M, Gutteridge CE, Danishefsky SJ. J. Am. Chem. Soc. 1997; 119: 10064
    • 4b Crich D, Dai Z, Gastaldi S. J. Org. Chem. 1999; 64: 5224
    • 4c Chen L, Zhao X.-E, Lai D, Song Z, Kong F. Carbohydr. Res. 2006; 341: 1174
    • 4d Zhao G, Wang T. Angew. Chem. Int. Ed. 2018; 57: 6120
    • 5a Schmidt RR, Michel J. Angew. Chem. Int. Ed. 1980; 19: 731
    • 5b Hashimoto S, Hayashi M, Noyori R. Tetrahedron Lett. 1984; 25: 1379
    • 5c Ito Y, Ogawa T. Tetrahedron Lett. 1987; 28: 4701
    • 5d Schmidt RR, Behrendt M, Toepfer A. Synlett 1990; 694
    • 5e Vankar YD, Vankar PS, Behrendt M, Schmidt RR. Tetrahedron 1991; 47: 9985
    • 5f Hashimoto S, Umeo K, Sano A, Watanabe N, Nakajima M, Ikegami S. Tetrahedron Lett. 1995; 63: 2251
    • 5g Hashihayata T, Mandai H, Mukaiyama T. Bull. Chem. Soc. Jpn. 2004; 77: 169
    • 5h Yang D.-M, Chen Y, Sweeney RP, Lowary TL, Liang X.-Y. Org. Lett. 2018; 20: 2287
    • 6a Wever WJ, Cinelli MA, Bowers AA. Org. Lett. 2013; 15: 30
    • 6b Vibhute AM, Dhaka A, Athiyarath V, Sureshan KM. Chem. Sci. 2016; 7: 4259
    • 6c Goswami M, Ashley DC, Baik M.-H, Pohl NL. B. J. Org. Chem. 2016; 81: 5949
    • 6d Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Science 2017; 35(6321): 162
    • 7a Chao CS, Lin CY, Mulani S, Hung WC, Mong KK. Chem. Eur. J. 2011; 17: 12193
    • 7b Buda S, Golebiowska P, Mlynarski J. Eur. J. Org. Chem. 2013; 3988
    • 7c Cox DJ, Singh GP, Watson AJ. A, Fairbanks AJ. Eur. J. Org. Chem. 2014; 4624
    • 7d Somasundaram D, Balasubramanian KK, Bhagavathy S. Carbohydr. Res. 2017; 449: 95
    • 7e Mukherjee MM, Basu N, Ghosh R. RSC Adv. 2016; 6: 105589
  • 8 Kim JH, Yang H, Boons GJ. Angew. Chem. Int. Ed. 2005; 44: 947
  • 9 Smoot JT, Pornsuriyasak P, Demchenko AV. Angew. Chem. Int. Ed. 2005; 44: 7123
  • 10 Mensah EA, Azzarelli JM, Nguyen HM. J. Org. Chem. 2009; 74: 1650
  • 11 Buda S, Nawoj M, Golebiowska P, Dyduch K, Michalak A, Mlynarski J. J. Org. Chem. 2015; 80: 770
  • 12 Peng P, Schmidt RR. Acc. Chem. Res. 2017; 50: 1171
    • 13a Marra A, Esnault J, Veyrieres A, Sinay P. J. Am. Chem. Soc. 1992; 114: 6354
    • 13b Crich D, Patel M. Carbohydr. Res. 2006; 341: 1467
    • 13c Chao CS, Lin CY, Mulani S, Hung WC, Mong KT. Chem. Eur. J. 2011; 17: 12193
    • 13d Chu A.-HA, Minciunescu A, Bennett CS. Org. Lett. 2015; 17: 6262
    • 14a Imagawa H, Kinoshita A, Fukuyama T, Yamamoto H, Nishizawa M. Tetrahedron Lett. 2006; 47: 4729
    • 14b Sureshkumar G, Hotha S. Chem. Commun. 2008; 4282
    • 14c Yang F, Wang Q, Yu B. Tetrahedron Lett. 2012; 53: 5231
    • 14d Ramana KN, Rengarajan B. Org. Biomol. Chem. 2015; 13: 5094
    • 15a Cornil J, Guerinot A, Reymond S, Cossy J. J. Org. Chem. 2013; 78: 10273
    • 15b Zhu Y, Li C, Zhang J, She M, Sun W, Wan K, Wang Y, Yin B, Liu P, Li J. Org. Lett. 2015; 17: 3872
    • 15c Shi JL, Zhang JC, Wang BQ, Hu P, Zhao KQ, Shi J. Org. Lett. 2016; 18: 1238
    • 15d Zhao J, Xu Z, Oniwa K, Asao N, Yamamoto Y, Jin T. Angew. Chem. Int. Ed. 2016; 55: 259
    • 15e Jang SS, Youn SW. Org. Biomol. Chem. 2016; 14: 2200
    • 15f Shiva Kumar K, Siddi Ramulu M, Rajesham B, Kumar NP, Voora V, Kancha RK. Org. Biomol. Chem. 2017; 15: 4468
    • 15g Sun G, Wu Y, Liu A, Qiu S, Zhang W, Zhang J. Synlett 2018; 29: 668
  • 16 Hotha S, Kashyap S. J. Am. Chem. Soc. 2006; 128: 9620
    • 17a Jana U, Biswas S, Maiti S. Eur. J. Org. Chem. 2008; 5798
    • 17b Wu XF, Bezier D, Darcel C. Adv. Synth. Catal. 2009; 351: 367
    • 17c Shahzad SA, Vivant C, Wirth T. Org. Lett. 2010; 12: 1364
    • 17d Gay RM, Manarin F, Schneider CC, Barancelli DA, Costa MD, Zeni G. J. Org. Chem. 2010; 75: 5701
    • 17e Huang L, Cheng K, Yao B, Xie Y, Zhang Y. J. Org. Chem. 2011; 76: 5732
    • 17f Boddien A, Mellmann D, Gartner F, Jackstell R, Junge H, Dyson PJ, Laurenczy G, Ludwig R, Beller M. Science 2011; 333: 1733
    • 17g Speranca A, Godoi B, Pinton S, Back DF, Menezes PH, Zeni G. J. Org. Chem. 2011; 76: 6789
    • 17h Patil NT, Shinde VS, Thakare MS, Hemant KumarP, Bangal PR, Barui AK, Patra CR. Chem. Commun. 2012; 48: 11229
    • 17i Vidhani DV, Cran JW, Krafft ME, Alabugin IV. Org. Biomol. Chem. 2013; 11: 1624
    • 17j Su Y, Zhang Y, Akhmedov NG, Petersen JL, Shi X. Org. Lett. 2014; 16: 2478
    • 17k Kepp KP. Inorg. Chem. 2016; 55: 9461
    • 17l Ren B, Ramstrom O, Zhang Q, Ge J, Dong H. Chemistry 2016; 22: 2481
    • 17m Bleith T, Gade LH. J. Am. Chem. Soc. 2016; 138: 4972
    • 17n Okamura M, Kondo M, Kuga R, Kurashige Y, Yanai T, Hayami S, Praneeth VK, Yoshida M, Yoneda K, Kawata S, Masaoka S. Nature 2016; 530(7591): 465
    • 17o Ford CL, Park YJ, Matson EM, Gordon Z, Fout AR. Science 2016; 354(6313): 741
    • 17p Brenna D, Villa M, Gieshoff TN, Fischer F, Hapke M, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2017; 56: 8451
    • 18a Zhou JF, Chen X, Wang QB, Zhang B, Zhang LY, Yusulf A, Wang ZF, Zhang JB, Tang J. Chin. Chem. Lett. 2010; 21: 922
    • 18b Torres Galvis HM, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP. Science 2012; 335: 835
    • 18c Mazzotta MG, Gupta D, Saha B, Patra AK, Bhaumik A, Abu-Omar MM. ChemSusChem 2014; 7: 2342
    • 18d Zhou J, Chen H, Shan J, Li J, Yang G, Chen X, Xin K, Zhang J, Tang J. J. Carbohydr. Chem. 2014; 33: 313
    • 18e Zhang T, Li W, Xu Z, Liu Q, Ma Q, Jameel H, Chang HM, Ma L. Bioresour. Technol. 2016; 209: 108
    • 18f Sun G, Qiu S, Ding Z, Chen H, Zhou J, Wang Z, Zhang J. Synlett 2017; 28: 347
    • 18g Ding Z, Luo X, Ma Y, Chen H, Qiu S, Sun G, Zhang W, Yu C, Zhang J. J. Carbohydr. Chem. 2018; 37: 81
    • 19a Kayastha AK, Hotha S. Chem. Commun. 2012; 48: 7161
    • 19b Adhikari S, Baryal KN, Zhu D, Li X, Zhu J. ACS Catal. 2012; 3: 57
    • 19c Yadav JS, Yadav NN, Gupta MK, Srivastava N, Subba Reddy BV. Monatsh. Chem. 2014; 145: 517
  • 20 Vidadala SR, Hotha S. Chem. Commun. 2009; 2505
    • 21a Shamim A, Vasconcelos SN. S, Ali B, Madureira LS, Zukerman-Schpector J, Stefani HA. Tetrahedron Lett. 2015; 56: 5836
    • 21b Whitfield DM. Carbohydr. Res. 2015; 403: 69
    • 21c Adero PO, Amarasekara H, Wen P, Bohe L, Crich D. Chem. Rev. 2018; 118: 8242
    • 22a Afsaneh F, Hassan HM. J. Catal. 2017; 352: 229
    • 22b Saeed R, Fatemeh NC. R. Chimie 2017; 20: 967
    • 22c Kayhaneh B, Afsaneh F, Hassan HM, Christoph J. Tetrahedron 2018; 74: 2202
    • 22d Kayhaneh B, Hassan HM. Inorg. Chim. Acta 2018; 471: 113
  • 23 Qiu S, Sun G, Ding Z, Chen H, Zhang J. Synlett 2017; 28: 2024
    • 24a Tsutsumi H, Ishido Y. Carbohydr. Res. 1981; 88: 61
    • 24b Qiu D.-X, Wang Y.-F, Caj HS. Synth. Commun. 1989; 19: 3453
    • 24c Gueyrard D, Rollin P, Nga TT. T, Ourevitch MO, Bégué J.-P, Bonnet-Delpon D. Carbohydr. Res. 1999; 318: 171
    • 24d Hadad C, Bouquillon S, Harakat D, Muzart J. Appl. Organomet. Chem. 2009; 23: 161
    • 24e McKay MJ, Naab BD, Mercer GJ, Nguyen HM. J. Org. Chem. 2009; 74: 4705
    • 24f Jalsa NK. Tetrahedron Lett. 2011; 52: 6587
    • 24g Mattson AL, Michel AK, Cloninger MJ. Carbohydr. Res. 2012; 347: 142
    • 24h Padungros P, Alberch L, Wei A. J. Org. Chem. 2014; 79: 2611
    • 24i Liu X, Zhang B, Gu X, Chen G, Chen L, Wang X, Xiong B, You Q.-D, Chen Y.-L, Shen J. Carbohydr. Res. 2014; 398: 45
    • 24j Roy R, Rajasekaran P, Mallick A, Vankar YD. Eur. J. Org. Chem. 2014; 5564
    • 24k Tambie MS, Jalsa NK. J. Carbohydr. Chem. 2015; 34: 545
    • 24l Palanivel A, Chennaiah A, Dubbu S, Mallick A, Vankar YD. Carbohydr. Res. 2017; 437: 43
    • 24m Yang J, Meng X, Shi Y. Faming Zhuanli Shenqing CN 107936070 A, 2018
    • 24n Chatterjee S, Moon S, Hentschel F, Gilmore K, Seeberger PH. J. Am. Chem. Soc. 2018; 140: 11942
    • 24o Mishra KB, Singh AK, Kandasamy J. J. Org. Chem. 2018; 83: 4204
    • 24p Ye H, Xiao C, Zhou Q.-Q, Wang PG, Xiao W.-J. J. Org. Chem. 2018; 83: 13325
    • 24q Shaw M, Thakur R, Kumar A. J. Org. Chem. 2019; 84: 589