Synlett 2019; 30(10): 1209-1214
DOI: 10.1055/s-0037-1611793
cluster
© Georg Thieme Verlag Stuttgart · New York

1,10-Phenanthroline- or Electron-Promoted Cyanation of Aryl Iodides

a   Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: suga@cc.okayama-u.ac.jp   Email: mitsudo@cc.okayama-u.ac.jp
,
Kazuki Yoshioka
a   Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: suga@cc.okayama-u.ac.jp   Email: mitsudo@cc.okayama-u.ac.jp
,
Takayuki Hirata
a   Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: suga@cc.okayama-u.ac.jp   Email: mitsudo@cc.okayama-u.ac.jp
,
a   Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: suga@cc.okayama-u.ac.jp   Email: mitsudo@cc.okayama-u.ac.jp
,
Koji Midorikawa
b   Nippoh Chemicals Co., Ltd., 8-15, 4-Chome, Nihonbashi-Honchou, Chuo-Ku, Tokyo 103-0023, Japan
,
a   Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan   Email: suga@cc.okayama-u.ac.jp   Email: mitsudo@cc.okayama-u.ac.jp
› Author Affiliations
This work was supported in part by JSPS KAKENHI Grant Numbers JP16K05695, JP16K05777, JP16H01155, and JP18H04415 in Middle Molecular Strategy.

Further Information

Publication History

Received: 05 February 2019

Accepted after revision: 24 March 2019

Publication Date:
11 April 2019 (online)


Published as part of the Cluster Electrochemical Synthesis and Catalysis

Abstract

A 1,10-phenanthroline-promoted cyanation of aryl iodides has been developed. 1,10-Phenanthroline worked as an organocatalyst for the reaction of aryl iodides with tetraalkylammonium cyanide to afford aryl cyanides. A similar reaction occurred through an electroreductive process.

Supporting Information

 
  • References and Notes

    • 1a Kleemann A, Engel J, Kutscher B, Reichert D. Pharmaceutical Substances: Syntheses Patents, Applications, 4th ed. Thieme; Stuttgart: 2001
    • 1b Larock RC. Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Wiley-VCH; Weinheim: 1989: 819
    • 1c Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 2a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 1633
    • 2b Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 2650
    • 2c Sandmeyer T. Ber. Dtsch. Chem. Ges. 1885; 18: 1492
    • 2d Sandmeyer T. Ber. Dtsch. Chem. Ges. 1885; 18: 1496
    • 2e Mo F, Qiu D, Zhang Y, Wang J. Acc. Chem. Res. 2018; 51: 496
    • 3a Rosenmund KW, Struck E. Ber. Dtsch. Chem. Ges. 1919; 52: 1749
    • 3b Koelsch CF, Whitney AG. J. Org. Chem. 1941; 6: 795
    • 3c von Braun J, Manz G. Liebigs Ann. Chem. 1931; 488: 111
    • 3d Connor JA, Leeming SW, Price R. J. Chem. Soc., Perkin Trans. 1 1990; 1127
    • 3e Callen JE, Dornfeld CA, Coleman GH. Org. Synth. 1948; 28: 34
    • 3f Wu JX, Beck B, Ren RX. Tetrahedron Lett. 2002; 43: 387

      For reviews, see:
    • 4a Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 4b Sundermeier M, Zapf A, Beller M. Eur. J. Inorg. Chem. 2003; 3513
    • 4c Yan G, Zhang Y, Wang J. Adv. Synth. Catal. 2017; 359: 4068
    • 4d Kim J, Kim HJ, Chang S. Angew. Chem. Int. Ed. 2012; 51: 11948
    • 4e Wang T, Jiao N. Acc. Chem. Res. 2014; 47: 1137
    • 4f Ping Y, Ding Q, Peng Y. ACS Catal. 2016; 6: 5989

      For recent examples, see:
    • 5a Zhang S, Neumann H, Beller M. Chem. Eur. J. 2018; 24: 67
    • 5b Xia A, Xie X, Chen H, Zhao J, Zhang C, Liu Y. Org. Lett. 2018; 20: 7735
    • 5c Makaravage KJ, Shao X, Brooks AF, Yang L, Sanford MS, Scott PJ. H. Org. Lett. 2018; 20: 1530
    • 5d Gan Y, Wang G, Xie X, Liu Y. J. Org. Chem. 2018; 83: 14036
    • 5e Zhang X, Xia A, Chen H, Liu Y. Org. Lett. 2017; 19: 2118
    • 5f Kristensen SK, Eikeland EZ, Taarning E, Lindhardt AT, Skrydstrup T. Chem. Sci. 2017; 8: 8094
    • 5g Kim K, Hong SH. Adv. Synth. Catal. 2017; 359: 2345
    • 5h Coombs JR, Fraunhoffer KJ, Simmons EM, Stevens JM, Wisniewski SR, Yu M. J. Org. Chem. 2017; 82: 7040
    • 5i Bag S, Jayarajan R, Dutta U, Chowdhury R, Mondal R, Maiti D. Angew. Chem. Int. Ed. 2017; 56: 12538
    • 5j Škoch K, Císařová I, Štěpnička P. Organometallics 2015; 34: 1942
    • 5k Sharif M, Wu X.-F. RSC Adv. 2015; 5: 21001
    • 5l Nasrollahzadeh M, Jaleh B, Fakhri P, Zahraei A, Ghadery E. RSC Adv. 2015; 5: 2785
    • 5m Mishra NK, Jeong T, Sharma S, Shin Y, Han S, Park J, Oh JS, Kwak JH, Jung YH, Kim IS. Adv. Synth. Catal. 2015; 357: 1293
    • 5n Cohen DT, Buchwald SL. Org. Lett. 2015; 17: 202
    • 5o Zanon J, Klapars A, Buchwald SL. J. Am. Chem. Soc. 2003; 125: 2890

      For recent representative reports, see:
    • 6a Zheng S, Yu C, Shen Z. Org. Lett. 2012; 14: 3644
    • 6b Shu Z, Ji W, Wang X, Zhou Y, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2014; 53: 2186
    • 6c Dong J, Wu Z, Liu Z, Liu P, Sun P. J. Org. Chem. 2015; 80: 12588
    • 6d Mishra NK, Jeong T, Sharma S, Shin Y, Han S, Park J, Oh JS, Kwak JH, Jung YH, Kim IS. Adv. Synth. Catal. 2015; 357: 1293
    • 6e Okamoto K, Sakata N, Ohe K. Org. Lett. 2015; 17: 4670
    • 6f Pawar AB, Chang S. Org. Lett. 2015; 17: 660
    • 6g Zhao M, Zhang W, Shen Z. J. Org. Chem. 2015; 80: 8868
    • 6h Zhu Y, Li L, Shen Z. Chem. Eur. J. 2015; 21: 13246
    • 6i Zhu Y, Zhao M, Lu W, Li L, Shen Z. Org. Lett. 2015; 17: 2602
    • 6j Liu W, Richter SC, Mei R, Feldt M, Ackermann L. Chem. Eur. J. 2016; 22: 17958
    • 6k Takise R, Itami K, Yamaguchi J. Org. Lett. 2016; 18: 4428
    • 6l Ogiwara Y, Morishita H, Sasaki M, Imai H, Sakai N. Chem. Lett. 2017; 46: 1736
    • 6m Yan Y, Sun S, Cheng J. J. Org. Chem. 2017; 82: 12888
    • 6n Yu P, Morandi B. Angew. Chem. Int. Ed. 2017; 56: 15693
    • 6o Lv S, Li Y, Yao T, Yu X, Zhang C, Hai L, Wu Y. Org. Lett. 2018; 20: 4994
    • 6p Shirsath SR, Shinde GH, Shaikh AC, Muthukrishnan M. J. Org. Chem. 2018; 83: 12305
    • 6q Yu X, Tang J, Jin X, Yamamoto Y, Bao M. Asian J. Org. Chem. 2018; 7: 550
    • 6r Ueda Y, Tsujimoto N, Yurino T, Tsurugi H, Mashima K. Chem. Sci. 2019; 10: 994
    • 7a Dohi T, Morimoto K, Kiyono Y, Tohma H, Kita Y. Org. Lett. 2005; 7: 537
    • 7b Dohi T, Morimoto K, Takenaga N, Goto A, Maruyama A, Kiyono Y, Tohma H, Kita Y. J. Org. Chem. 2007; 72: 109
    • 7c Yang Y, Zhang Y, Wang J. Org. Lett. 2011; 13: 5608
    • 7d McManus J, Nicewicz D. J. Am. Chem. Soc. 2017; 139: 2880
    • 8a Petrillo G, Novi M, Garbarino G, Dell’erba C. Tetrahedron 1987; 43: 4625
    • 8b Novi M, Garbarino G, Petrillo G, Dell’erba C. Tetrahedron 1990; 46: 2205

      For representative examples, see:
    • 9a Yanagisawa S, Ueda K, Taniguchi T, Itami K. Org. Lett. 2008; 10: 4673
    • 9b Sun C.-L, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li B.-J, Shi Z.-J. Nat. Chem. 2010; 2: 1044
    • 9c Shirakawa E, Itoh K.-i, Higashino T, Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
    • 9d Liu W, Cao H, Zhang H, Zhang H, Chung KH, He C, Wang H, Kwong FY, Lei A. J. Am. Chem. Soc. 2010; 132: 16737
    • 9e Qiu Y, Liu Y, Yang K, Hong W, Li Z, Wang Z, Yao Z, Jiang S. Org. Lett. 2011; 13: 3556
    • 9f Budén ME, Guastavino JF, Rossi RA. Org. Lett. 2013; 15: 1174
    • 9g Dewanji A, Murarka S, Curran DP, Studer A. Org. Lett. 2013; 15: 6102
    • 9h Leifert D, Daniliuc CG, Studer A. Org. Lett. 2013; 15: 6286
    • 9i Wertz S, Leifert D, Studer A. Org. Lett. 2013; 15: 928
    • 9j Song Q, Zhang D, Zhu Q, Xu Y. Org. Lett. 2014; 16: 5272
    • 9k Studer A, Curran DP. Nat. Chem. 2014; 6: 765
    • 9l Hartmann M, Daniliuc CG, Studer A. Chem. Commun. 2015; 51: 3121
    • 9m Leifert D, Studer A. Org. Lett. 2015; 17: 386
    • 9n Anton-Torrecillas C, Felipe-Blanco D, Gonzalez-Gomez JC. Org. Biomol. Chem. 2016; 14: 10620
    • 9o Jia F.-C, Xu C, Zhou Z.-W, Cai Q, Wu Y.-D, Wu A.-X. Org. Lett. 2016; 18: 5232
    • 9p Zhang L, Yang H, Jiao L. J. Am. Chem. Soc. 2016; 138: 7151
    • 9q Budén ME, Bardagi JI, Puiatti M, Rossi RA. J. Org. Chem. 2017; 82: 8325
    • 9r Taniguchi T, Naka T, Imoto M, Takeda M, Nakai T, Mihara M, Mizuno T, Nomoto A, Ogawa A. J. Org. Chem. 2017; 82: 6647
    • 9s Barham JP, Dalton SE, Allison M, Nocera G, Young A, John MP, McGuire T, Campos S, Tuttle T, Murphy JA. J. Am. Chem. Soc. 2018; 140: 11510
    • 9t Guo Z, Li M, Mou X.-Q, He G, Xue X.-S, Chen G. Org. Lett. 2018; 20: 1684
    • 9u Shirakawa E, Hayashi T. Chem. Lett. 2012; 41: 130
    • 9v Shirakawa E, Watabe R, Murakami T, Hayashi T. Chem. Commun. 2013; 49: 5219
    • 9w Shirakawa E, Tamakuni F, Kusano E, Uchiyama N, Konagaya W, Watabe R, Hayashi T. Angew. Chem. Int. Ed. 2014; 53: 521
    • 9x Ueno R, Ikeda Y, Shirakawa E. Eur. J. Org. Chem. 2017; 2017: 4188
    • 9y Ikeda Y, Ueno R, Akai Y, Shirakawa E. Chem. Commun. 2018; 54: 10471
    • 9z Kiriyama K, Okura K, Tamakuni F, Shirakawa E. Chem. Eur. J. 2018; 24: 4519
    • 9aa Okura K, Teranishi T, Yoshida Y, Shirakawa E. Angew. Chem. Int. Ed. 2018; 57: 7186
  • 10 Shirakawa and Hayashi reported that their cross-coupling reaction did not proceed without t -BuOM [see Ref. 9(c)].
  • 11 Caminos DA, Garro AD, Soria-Castro SM, Alicia B, Peñéñory AB. RSC Adv. 2015; 5: 20058
  • 12 It is known that the addition of TEMPO suppresses SRN1-type reactions; see refs 9(a), 9(d), and 9(e).
  • 13 1-Naphthonitrile (2a); Typical ProcedureA solution of 1-iodonaphthalene (127 mg, 0.50 mmol), Et4NCN (391 mg, 2.50 mmol), and 1,10-phenanthroline (18.2 mg, 0.1 mmol) in DMSO (1 mL) was stirred at 130 °C for 1 h. H2O (15 mL) was added and the resulting mixture was extracted with EtOAc (3 × 5 mL). The combined organic phase was dried (MgSO4), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography [silica gel, hexane–EtOAc (30:1)] to give a yellow oil; yield: 59.5 mg (0.39 mmol, 78%).IR (neat): 3061, 2222, 1591, 1512, 1375 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.53 (t, J = 7.8 Hz, 1 H), 7.63 (t, J = 7.6 Hz, 1 H), 7.70 (t, J = 7.9 Hz, 1 H), 7.87–7.96 (m, 2 H), 8.08 (d, J = 7.9 Hz, 1 H), 8.24 (d, J = 7.9 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 110.0, 117.7, 124.8, 125.0, 127.4, 128.5, 128.6, 132.2, 132.5, 132.8, 133.2.