Synthesis 2019; 51(17): 3277-3286
DOI: 10.1055/s-0037-1611563
paper
© Georg Thieme Verlag Stuttgart · New York

Manganese(III)-Based Oxidative Cyclization of N-Aryl-2-oxocyclo­alkane-1-carboxamides: Synthesis of Spiroindolinones

Shintaro Katayama
,
Hiroshi Nishino*
This research was supported by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C) (No. 25410049 and 18K05109). We also acknowledge the Nissan Chemical Corporation for financial support.
Further Information

Publication History

Received: 22 March 2019

Accepted after revision: 04 May 2019

Publication Date:
24 May 2019 (online)


This manuscript is dedicated to the late Professor Shô Ito, Professor Emeritus of Tohoku University, Japan, who showed Hiroshi Nishino the way as a chemist.

Abstract

The Mn(III)-based oxidative cyclization of twenty-five N-aryl-2-oxocycloalkane-1-carboxamides is investigated. The reactions progress efficiently to give the desired spiro[cycloalkane-1,3′-indoline]-2,2′-diones in high to quantitative yields. The easy conversion of the carbonyl functional group of one of the indoline products, 1′-methylspiro[cyclo­hexane-1,3′-indoline]-2,2′-dione, is also demonstrated.

Supporting Information

 
  • References

    • 1a Habermas KL, Denmark SE, Jones TK. Org. React. 1994; 45: 1
    • 1b Giese B, Kopping B, Göbel T, Dickhaut J, Thoma G, Kulicke KJ, Trach F. Org. React. 1996; 48: 301
    • 1c Julia M. Acc. Chem. Res. 1971; 4: 386
    • 1d Iqbal J, Bhatia B, Nayyar N. Chem. Rev. 1994; 94: 519
    • 1e Tang M.-C, Zou Y, Watanabe K, Walsh CT, Tang Y. Chem. Rev. 2017; 117: 5226
    • 2a Rastetter WH, Phillion DP. J. Org. Chem. 1981; 46: 3209
    • 2b Wisner JA, Beer PA, Drew MG. B. Angew. Chem. Int. Ed. 2001; 40: 3606
    • 2c Shorthill BJ, Granucci RG, Powell DR, Glass TE. J. Org. Chem. 2002; 67: 904
    • 2d Pigge FC, Ghasedi F, Rath NP. J. Org. Chem. 2002; 67: 4547
    • 2e Miramon M.-L, Mignet N, Herscovici J. J. Org. Chem. 2004; 69: 6949
    • 2f Sierra MA, Pellico D, Gómez-Gallego M, Manchenño MJ, Torres R. J. Org. Chem. 2006; 71: 8787
    • 2g Muthusamy S, Gnanaprakasam B, Suresh E. J. Org. Chem. 2007; 72: 1495
    • 2h Leon F, Rivera DG, Wessjohann LA. J. Org. Chem. 2008; 73: 1762
    • 2i Gibson HW, Wang H, Bonrad K, Jones JW, Slebodnick C, Zackharov LN, Rheingold AL, Habenicht B, Lobue P, Ratliff AE. Org. Biomol. Chem. 2005; 3: 2114
    • 2j Pederson AM.-P, Ward EM, Schoonover DV, Slebodnick C, Gibson HW. J. Org. Chem. 2008; 73: 9094
    • 3a de Klein WJ. In Organic Syntheses by Oxidation with Metal Compounds . Mijis WJ, de Jonge CR. H. I. Plenum Press; New York: 1986: 261
    • 3b Snider BB. Chem. Rev. 1996; 96: 339
    • 3c Melikyan GG. Org. React. 1997; 49: 427
    • 3d Radicals in Organic Synthesis, Vol. 1. Renaud P, Sibi MP. Wiley-VCH; New York: 2001
    • 3e Zard SZ. Radical Reactions in Organic Synthesis . Oxford University Press; New York: 2003
    • 3f Snider BB. Tetrahedron 2009; 65: 10738
    • 3g Burton JW. In Encyclopedia of Radicals in Chemistry, Biology and Materials . Chatgilialoglu C, Studer A. John Wiley & Sons; New York: 2012: 901
    • 3h Krylov IB, Terent’ev AO, Timofeev VP, Shelimov BN, Novikov RA, Merkulova VM, Nikishin GI. Adv. Synth. Catal. 2014; 356: 2266
    • 4a Kloetzel MC. Org. React. 1948; 4: 1
    • 4b Holmes HL. Org. React. 1948; 4: 60
    • 4c Butz LW, Rytina AW. Org. React. 1949; 5: 136
    • 4d Brieger G, Bennett JN. Chem. Rev. 1980; 80: 63
    • 4e Takano K, Munakata R, Tadano K. Chem. Rev. 2005; 105: 4779
    • 4f Mackay EG, Sherburn MS. Synthesis 2015; 47: 1
    • 4g Yang R.-Y, Sun J, Yan C.-G. ACS Omega 2018; 3: 5406
    • 6a Nishino H. In Topics in Heterocyclic Chemistry, Bioactive Heterocycles I. Eguchi S. Springer; Berlin: 2006: 39
    • 6b Asahi K, Nishino H. Tetrahedron 2008; 64: 1620
    • 6c Asahi K, Nishino H. Synthesis 2009; 409
    • 6d Cong Z.-Q, Miki T, Urakawa O, Nishino H. J. Org. Chem. 2009; 74: 3978
    • 6e Ito Y, Tomiyasu Y, Kawanabe T, Uemura K, Ushimizu Y, Nishino H. Org. Biomol. Chem. 2011; 9: 1491
    • 6f Maemura Y, Tanoue Y, Nishino H. Heterocycles 2012; 85: 2491
    • 6g Matsumoto C, Yasutake K, Nishino H. Tetrahedron 2016; 72: 6963
    • 6h Huynh T.-T, Nguyen V.-H, Nishino H. Tetrahedron Lett. 2017; 58: 3619
    • 6i Huynh T.-T, Yamakawa H, Nguyen V.-H, Nishino H. ChemistrySelect 2018; 3: 6414
  • 7 Tsubusaki T, Nishino H. Tetrahedron 2009; 65: 9448
  • 8 Kikue N, Takahashi T, Nishino H. Heterocycles 2014; 90: 540
  • 9 Inoue T, Nishino H. Heterocycles 2018; 97: 431
    • 10a Takayanagi J, Nishino H. Abstracts of Papers, The 98th CSJ Annual Meeting. Funabashi; Japan: 20.03.2018: 3PC-023
    • 10b Katayama S, Nishino H. Abstracts of Papers, The 99th CSJ Annual Meeting. Kobe; Japan: 16.03.2019: 2PB-133
    • 11a Hurst TE, Gorman R, Drouhin P, Taylor RJ. K. Tetrahedron 2018; 74: 6485
    • 11b Venkatesan H, Davis MC, Altas Y, Snyder JP, Liotta DC. J. Org. Chem. 2001; 66: 3653
    • 11c Flann CJ, Overman LE, Sarkar AK. Tetrahedron Lett. 1991; 32: 6993
    • 11d Atarashi S, Choi J.-K, Ha D.-C, Hart DJ, Kuzmich D, Lee C.-S, Ramesh SC, Wu SC. J. Am. Chem. Soc. 1997; 119: 6226
    • 11e Madin A, O’Donnell CJ, Oh T, Old DW, Overman LE, Sharp MJ. J. Am. Chem. Soc. 2005; 127: 18054
  • 12 Matsumoto R, Nishino H. Synth. Commun. 2015; 45: 1807
  • 13 Yamada T, Iwahara Y, Nishino H, Kurosawa K. J. Chem Soc., Perkin Trans. 1 1993; 609
    • 14a Renz M, Meunier B. Eur. J. Org. Chem. 1999; 737
    • 14b Brink G.-J, Arends IW. C. E, Sheldon RA. Chem. Rev. 2004; 104: 4105
  • 15 Ouyang J, Nishino H, Kurosawa K. J. Heterocycl. Chem. 1996; 33: 1291
  • 16 Wang L, Su Y, Xu X, Zhang W. Eur. J. Org. Chem. 2012; 33: 6606