Synlett 2019; 30(07): 770-776
DOI: 10.1055/s-0037-1611460
synpacts
© Georg Thieme Verlag Stuttgart · New York

Synthetic Phosphonic Acids as Potent Tools to Study Phosphonate Enzymology

Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria   Email: katharina.pallitsch@univie.ac.at
,
T. Kalina
,
T. Stanković
› Author Affiliations
This work was supported by the Austrian Science Fund (FWF - Der Wissenschaftsfond), grant number: N28-27987.
Further Information

Publication History

Received: 19 December 2018

Accepted after revision: 19 December 2018

Publication Date:
23 January 2019 (online)


Published as part of the Special Section 10th EuCheMS Organic Division Young Investigator Workshop

Abstract

Phosphonic acids are highly stable phosphorus-containing compounds, which have been proposed as important intermediates in the global phosphorus cycle. Biogenic phosphonates as well as their synthetic analogues play an important role as potential enzyme inhibitor drugs and as alternative phosphorus source for microbes. Despite these properties, their metabolism is still poorly understood. New degradative pathways and unknown compounds are identified at fast pace. However, most of these pathways include a variety of unique enzymatic transformations, which are difficult to characterize – especially without sufficient amounts of the potential substrates and intermediates of the postulated transformations in hands. Thus, there is a great need for the development of synthetic methodologies to access phosphonic acids in high yields and in enantiomerically pure form for the use in enzymatic studies and in studies on the biological activity of newly isolated natural products, which are often only obtained in low yields. In this Synpacts article we aim at highlighting our recent contributions to this field.

1 Introduction
2 Phosphonates as Alternative Phosphorus Source

3 The Application of Phosphonates in Enzymatic Studies

4 Conclusion

 
  • References

  • 1 Quinn JP, Kulakova AN, Cooley NA, McGrath JW. Environ. Microbiol. 2007; 9: 2392 and references cited therein
  • 2 White AK, Metcalf WW. Ann. Rev. Microbiol. 2007; 61: 379
  • 3 Clark LL, Ingall ED, Benner R. Nature 1998; 393: 426
  • 4 McGrath JW, Chin JP, Quinn JP. Nat. Rev. Microbiol. 2013; 11: 412
  • 5 Lee KS, Metcalf WW, Wanner BL. J. Bacteriol. 1992; 174: 514
  • 6 Jia Y, Lu Z, Huang K, Herzberg O, Dunaway-Mariano D. Biochemistry 1999; 38: 14165
  • 7 Dill GM, Sammons RD, Feng PC. C, Kohn F, Kretzmer K, Mehrsheikh A, Bleeke M, Honegger JL, Farmer D, Wright D. Glyphosate Resistance in Crops and Weeds . Nandula VK. Wiley; Hoboken: 2010: 1
  • 8 Holy A. Curr. Pharm. Des. 2003; 9: 2567
  • 9 Kahan FM, Kahan JS, Cassidy PJ, Kropp H. Ann. N.Y. Acad. Sci. 1974; 235: 364
  • 10 Wiesner J, Borrmann S, Jomaa H. Parasitol. Res. 2003; 90: 71
  • 11 Metcalf WW, van der Donk WA. Ann. Rev. Biochem. 2009; 78: 65
  • 12 Hilderbrand RL, Henderson TO. The Role of Phosphonates in Living Systems . Hilderbrand RL. CRC Press; Boca Raton, FL: 1983
  • 13 Horiguchi M, Kandatsu M. Nature 1959; 184: 901
  • 14 Pallitsch K, Rogers MP, Andrews FH, Hammerschmidt F, McLeish M. J. Bioorg. Med. Chem. 2017; 25: 4368
  • 15 Cioni JP, Doroghazi JR, Ju K.-S, Yu X, Evans BS, Lee J, Metcalf WW. J. Nat. Prod. 2014; 77: 243
  • 16 For a detailed review, see: Horsman GP, Zechel DL. Chem. Rev. 2017; 117: 5704
  • 17 Kolowith LC, Ingall ED, Brenner R. Limnol. Oceaonogr. 2001; 46: 309
  • 18 Bjorkman KM, Karl DM. Limnol. Oceanogr. 2003; 48: 1049
  • 19 Huang J, Su Z, Xu Y. J. Mol. Evol. 2005; 61: 682
  • 20 Villarreal-Chiu JF, Quinn JP, McGrath JW. Front. Microbiol. 2012; 3: 1
  • 21 Wang Q, Dore JE, McDermott TR. Environ. Microbiol. 2017; 19: 2366
  • 22 Metcalf WW, Griffin BM, Cicchillo RM, Gao J, Janga SC, Cooke HA, Circello BT, Evans BS, Martens-Habbena W, Stahl DA, van der Donk WA. Science 2012; 337: 1104
  • 23 Kamat SS, Williams HJ, Dangott LJ, Chakrabarti M, Raushel FM. Nature 2013; 497: 132
  • 24 Pasek MA, Sampson JM, Atlas Z. Proc. Natl. Acad. Sci. U.S.A. 2014; 111: 15468
  • 25 Wanner BL. Biodegradation 1994; 5: 175
  • 26 McGrath JW, Ternan NG, Quinn JP. Lett. Appl. Microbiol. 1997; 24: 69
  • 27 Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, DeLong EF. Nat. Geosci. 2008; 1: 473
  • 28 Zechel DL. Structure 2016; 24: , 3
  • 29 La Nauze JM, Coggins JR, Dixon HB. Biochem. J. 1977; 165: 409
  • 30 Dumora C, Lacoste AM, Cassaigne A. Biochim. Biophys. Acta 1989; 997: 193
  • 31 McSorley FR, Wyatt PB, Martinez A, DeLong EF, Hove-Jensen B, Zechel DL. J. Am. Chem. Soc. 2012; 134: 8364
  • 32 van Staalduinen LM, McSorley FR, Schiessl K, Séguin J, Wyatt PB, Hammerschmidt F, Zechel DL. Proc. Natl. Acad. Sci. U.S.A. 2014; 111: 5171
  • 33 Peck SC, van der Donk WA. Curr. Opin. Chem. Biol. 2013; 17: 580
  • 34 Nair SK, van der Donk WA. Arch. Biochem. Biophys. 2011; 505: 13
  • 35 Schweifer A, Hammerschmidt F. Bioorg. Med. Chem. Lett. 2008; 18: 3056
  • 36 McGrath JW, Hammerschmidt F, Quinn JP. Appl. Environ. Microbiol. 1998; 64: 356
  • 37 Schiessl K, Roller A, Hammerschmidt F. Org. Biomol. Chem. 2013; 11: 7420
  • 38 Unpublished data.
  • 39 Goettge MN, Cioni JP, Ju K.-S, Pallitsch K, Metcalf WW. J. Biol. Chem. 2018; 18: 6859
  • 40 Ju K.-S, Gao J, Doroghazi JR, Wang K.-KA, Thibodeaux CJ. et al. Proc. Natl. Acad. Sci. U.S.A. 2015; 112: 12175
  • 41 Pallitsch K, Happl B, Stieger C. Chem. Eur. J. 2017; 23: 15655
  • 42 Sønderby IE, Geu-Flores F, Halkier BA. Trends Plant Sci. 2010; 15: 283
  • 43 Elmore CS, Dean DC, Zhang Y, Mellilo DG. J. Labelled Compd. Radiopharm. 2004; 47: 837
  • 44 McGrath JW, Hammerschmidt F, Preusser W, Quinn JP, Schweifer A. Org. Biomol. Chem. 2009; 7: 1944
  • 45 McGrath JW, Hammerschmidt F, Kählig H, Wuggenig F, Lamprecht G, Quinn JP. Chem. Eur. J. 2011; 17: 13341
  • 46 Pallitsch K, Schweifer A, Roller A, Hammerschmidt F. Org. Biomol. Chem. 2017; 15: 3276
  • 47 Korn ED, Dearborn DG, Fales HM, Sokoloski EA. J. Biol. Chem. 1973; 248: 2257
  • 48 Seto H, Kuzuyama T. Nat. Prod. Rep. 1999; 16: 589