Synlett 2020; 31(09): 889-894
DOI: 10.1055/s-0037-1610756
letter
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Annulation of Aliphatic Amides with Alkynyl­silanes: An Expeditious Approach to Five-Membered Lactams

Cong Lin
,
Yiqing Xu
,
Qiuxun Teng
,
Jingyi Lin
,
Fei Gao
,
Liang Shen
Funding from the Natural Science Foundation of China (Grant Nos. 51963010 and 21704036) and the Science Funds of the Education Office of Jiangxi Province (Grant No. GJJ180601) is acknowledged.
Further Information

Publication History

Received: 25 December 2019

Accepted after revision: 20 February 2020

Publication Date:
05 March 2020 (online)


Abstract

An expeditious approach for the synthesis of diverse five-membered lactams through nickel-catalyzed annulation of the C(sp3)–H bonds of aliphatic amides with alkynylsilanes assisted by an 8-aminoquinolinyl directing group is reported, delivering the corresponding lactam derivatives in moderate to high yields. It is worth noting that alkynylsilanes are employed for the first time as coupling partners in the transition-metal-catalyzed functionalization of C(sp3)–H bonds of aliphatic amides. Equimolar amounts of alkynylsilanes and aliphatic amides are utilized, which greatly increases the efficiency of this protocol.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 1b Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094
    • 1c Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1d Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 1e Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 1f Liu C, Zhang H, Sui W, Lei A. Chem. Rev. 2011; 111: 1780
    • 1g Sun C.-L, Li B.-J, Shi Z.-J. Chem. Commun. 2010; 46: 677
    • 1h Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 1i Misal Castro LC, Chatani N. Chem. Lett. 2015; 44: 410
    • 1j Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
    • 1k Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 1l Kim D.-S, Park W.-J, Jun C.-H. Chem. Rev. 2017; 117: 8977
    • 1m Park Y, Kim Y, Chang S. Chem. Rev. 2017; 117: 9247

      For selected examples, see:
    • 2a Casiraghi G, Zanardi F. Chem. Rev. 2000; 100: 1929
    • 2b Gheorghe A, Schulte M, Reiser O. J. Org. Chem. 2006; 71: 2173
    • 2c Yeh VS. C, Kurukulasuriya R, Kerdesky FA. Org. Lett. 2006; 8: 3963
    • 2d Nicolaou KC, Dalby SM, Majumder U. J. Am. Chem. Soc. 2008; 130: 14942
    • 2e Juknaite L, Sugamata Y, Tokiwa K, Ishikawa Y, Takamizawa S, Eng A, Sakai R, Pickering DS, Frydenvang K, Swanson GT, Kastrup JS, Oikawa M. J. Med. Chem. 2013; 56: 2283

      For selected examples, see:
    • 3a Hashimoto M, Obora Y, Sakaguchi S, Ishii Y. J. Org. Chem. 2008; 73: 2894
    • 3b Krow GR. Tetrahedron 1981; 37: 1283
    • 3c Aubé J, Milligan GL. J. Am. Chem. Soc. 1991; 113: 8965
    • 3d Milligan GL, Mossman CJ, Aubé J. J. Am. Chem. Soc. 1995; 117: 10449
    • 3e Kunieda T, Nagamatsu T, Higuchi T, Hirobe M. Tetrahedron Lett. 1988; 29: 2203
    • 3f Knapp S, Gibson FS. Org. Synth. 1992; 70: 101
  • 4 Wasa M, Engle KM, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3680
  • 5 He G, Zhang S.-Y, Nack WA, Li Q, Chen G. Angew. Chem. Int. Ed. 2013; 52: 11124
  • 6 Zhang Q, Chen K, Rao W, Zhang Y, Chen F.-J, Shi B.-F. Angew. Chem. Int. Ed. 2013; 52: 13588
  • 7 Wang Z, Ni J, Kuninobu Y, Kanai M. Angew. Chem. Int. Ed. 2014; 53: 3496
  • 8 Wu X, Zhao Y, Ge H. Chem. Eur. J. 2014; 20: 9530
    • 9a Hasegawa N, Charra V, Inoue S, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2011; 133: 8070
    • 9b Hasegawa N, Shibata K, Charra V, Inoue S, Fukumoto Y, Chatani N. Tetrahedron 2013; 69: 4466
  • 10 Yoo EJ, Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 17378
  • 11 McNally A, Haffemayer B, Collins BS. L, Gaunt MJ. Nature 2014; 510: 129
  • 12 Wang P.-L, Li Y, Wu Y, Li C, Lan Q, Wang X.-S. Org. Lett. 2015; 17: 3698
    • 13a Zhang J, Chen H, Lin C, Liu Z, Wang C, Zhang Y. J. Am. Chem. Soc. 2015; 137: 12990
    • 13b Lin C, Zhang J, Chen Z, Liu Y, Liu Z, Zhang Y. Adv. Synth. Catal. 2016; 358: 1778
    • 13c Zhang J, Li D, Chen H, Wang B, Liu Z, Zhang Y. Adv. Synth. Catal. 2016; 358: 792

      For selected examples, see:
    • 15a Shiota H, Ano Y, Aihara Y, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2011; 133: 14952
    • 15b Aihara Y, Chatani N. J. Am. Chem. Soc. 2013; 135: 5308
    • 15c Aihara Y, Tobisu M, Fukumoto Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 15509
    • 15d Cong X, Li Y, Wei Y, Zeng X. Org. Lett. 2014; 16: 3926
    • 15e Song W, Lackner S, Ackermann L. Angew. Chem. Int. Ed. 2014; 53: 2477
    • 15f Wu X, Zhao Y, Ge H. J. Am. Chem. Soc. 2014; 137: 4924
    • 15g Lin C, Li D, Wang B, Yao J, Zhang Y. Org. Lett. 2015; 17: 1328
    • 15h Liu Y.-J, Zhang Z.-Z, Yan S.-Y, Liu Y.-H, Shi B.-F. Chem. Commun. 2015; 51: 7899
    • 15i Maity S, Agasti S, Earsad AM, Hazra A, Maiti D. Chem. Eur. J. 2015; 21: 11320
    • 15j Li M, Yang Y, Zhou D, Wan D, You J. Org. Lett. 2015; 17: 2546
    • 15k Ruan Z, Ghorai D, Zanoni G, Ackermann L. Chem. Commun. 2017; 53: 9113
    • 15l Honeycutt AP, Hoover JM. Org. Lett. 2018; 20: 7216
    • 15m Rajesh N, Sundararaju B. Asian J. Org. Chem. 2018; 7: 1368
    • 15n Yu L, Yang C, Yu Y, Liu D, Hu L, Xiao Y, Song Z.-N, Tan Z. Org. Lett. 2019; 21: 5634
    • 15o Skhiri A, Chatani N. Org. Lett. 2019; 21: 1774
    • 16a Aihara Y, Chatani N. J. Am. Chem. Soc. 2014; 136: 898
    • 16b Li M, Dong J, Huang X, Li K, Wu Q, Song F, You J. Chem. Commun. 2014; 50: 3944
    • 16c Tan G, Zhang L, Liao X, Shi Y, Wu Y, Yang Y, You J. Org. Lett. 2019; 19: 4830
  • 17 Lin C, Chen Z, Liu Y, Liu Z, Zhang Y. Org. Lett. 2017; 19: 850
  • 18 Luo F.-X, Cao Z.-C, Zhao H.-W, Wang D, Zhang Y.-F, Xu X, Shi Z.-J. Organometallics 2017; 361: 18
    • 19a Wu X, Zhao Y, Ge H. J. Am. Chem. Soc. 2014; 136: 1789
    • 19b Yokota A, Aihara Y, Chatani N. J. Org. Chem. 2014; 79: 11922
    • 19c Wang X, Zhu L, Chen S, Xu X, Au C.-T, Qiu R. Org. Lett. 2015; 17: 5228
    • 19d Yi J, Yang L, Xia C, Li F. J. Org. Chem. 2015; 80: 6213
    • 20a Lin C, Yu W, Yao J, Wang B, Liu Z, Zhang Y. Org. Lett. 2015; 17: 1340
    • 20b Wang X, Qiu R, Yan C, Reddy VP, Zhu L, Xu X, Yin S.-F. Org. Lett. 2015; 17: 1970
    • 20c Yan S.-Y, Liu Y.-J, Liu B, Liu Y.-H, Zhang Z.-Z, Shi B.-F. Chem. Commun. 2015; 51: 7341
  • 21 Hao W, Sha Y, Deng Y, Luo Y, Zeng L, Tang S, Weng Y, Chiang C.-W, Lei A. Chem. Eur. J. 2019; 25: 4931
  • 22 Luo F.-X, Xu X, Wang D, Cao Z.-C, Zhang Y.-F, Shi Z.-J. Org. Lett. 2016; 18: 2040
  • 23 Lactams 3 and 4; General Procedure A 25 mL sealed tube was charged with 2,2-disubstituted N-(quinolin-8-yl)propionamide 1 (0.1 mmol), alkynylsilane 2 (0.1 mmol), Ni(acac)2 (2.57 mg, 0.01 mmol), Na2CO3 (31.8 mg, 0.3 mmol), Ag2CO3 (82.8 mg, 0.3 mmol), TBAI (110.8 mg, 0.3 mmol) and PhCF3 (1.5 mL). The vial was then evacuated, filled with N2 and the reaction mixture stirred at 150 °C for 24 h. The mixture was then cooled to room temperature, diluted with EtOAc (2 mL), filtered through a Celite pad, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc/PE (1:5 to 1:2, v/v), to afford the desired alkylated product 3 or 4. (E)-5-Benzylidene-3,3-dimethyl-1-(quinolin-8-yl)pyrrolidin-2-one (3a) Yield: 32.5 mg (99%); yellow solid; Rf  = 0.51 (hexane/EtOAc, 2:1). 1H NMR (400 MHz, CDCl3): δ = 8.87 (dd, J 1 = 1.2 Hz, J 2 = 3.2 Hz, 1 H), 8.20 (dd, J 1 = 1.2 Hz, J 2 = 6.8 Hz, 1 H), 7.92 (dd, J 1 = 1.2 Hz, J 2 = 6.4 Hz, 1 H), 7.63–7.69 (m, 2 H), 7.41 (dd, J 1 = 3.2 Hz, J 2 = 6.8 Hz, 1 H), 7.21–7.25 (m, 2 H), 7.06–7.10 (m, 3 H), 5.28 (s, 1 H), 3.25 (dd, J 1 = 1.2 Hz, J 2 = 14.4 Hz, 1 H), 3.13 (dd, J 1 = 1.2 Hz, J 2 = 14.4 Hz, 1 H), 1.53 (s, 3 H), 1.43 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 181.1, 151.1, 144.3, 143.0, 137.0, 136.1, 133.4, 130.4, 129.6, 129.3, 128.3, 127.6, 126.4, 125.2, 121.9, 104.4, 41.2, 40.9, 26.1, 25.7. HRMS (EI-TOF): m/z [M]+ calcd for C22H20N2O: 328.1576; found: 328.1574.