Synthesis 2019; 51(20): 3805-3814
DOI: 10.1055/s-0037-1610724
paper
© Georg Thieme Verlag Stuttgart · New York

Treatment of Olefinic Amides with NBS in Water: Synthesis of Monobromo- and Multibromobenzoxazines

Xu Zhang
,
Wen-Bin Cao
,
Xiao-Ping Xu
Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. of China   Email: xuxp@suda.edu.cn   Email: shunjun@suda.edu.cn
,
Shun-Jun Ji
› Author Affiliations
We gratefully acknowledge the National Natural Science Foundation of China (21772138 and 21672157), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201708) and Soochow University.
Further Information

Publication History

Received: 25 April 2019

Accepted after revision: 09 July 2019

Publication Date:
01 August 2019 (online)


Abstract

Treatment of olefinic amides with N-bromosuccinimide (NBS) in water is reported. Monobromobenzoxazines were mainly formed at room temperature, while at 80 °C multibromobenzoxazines were preferentially generated. Mechanism studies showed that the reaction might proceed via a cascade of electrophilic addition at the C=C bond followed by electrophilic substitution at the aromatic ring. No additives are required in this protocol.

Supporting Information

 
  • References

    • 1a Krantz A, Spencer RW, Tam TF, Liak TJ, Copp LJ, Thomas EM, Rafferty SP. J. Med. Chem. 1990; 33: 464
    • 1b Hays SJ, Caprathe BW, Gilmore JL, Amin N, Emmerling MR, Michael W, Nadimpalli R, Nath R, Raser KJ, Stafford D, Watson D, Wang K, Jaen JC. J. Med. Chem. 1998; 41: 1060
    • 1c Zhang P.-W, Terefenko TA, Fensome A, Zhang Z.-M, Zhu Y, Cohen J, Winneker R, Wrobel J, Yardley J. Bioorg. Med. Chem. Lett. 2002; 12: 787
    • 2a Djabrouhou N, Guermouche MH. J. Pharm. Biomed. Anal. 2014; 100: 11
    • 2b Zhang P, Terefenko TA, Fensome A, Wrobel J, Winneker R, Lundeen S, Marschke KB, Zhang Z. J. Med. Chem. 2002; 45: 4379
    • 3a Wang Z, Ran Q.-C, Zhu R.-Q, Gu Y. RSC Adv. 2013; 3: 1350
    • 3b Wang H, Wang J, He X.-Y, Feng T.-T, Ramdani N, Luan M.-J, Liu W.-B, Xu X.-D. RSC Adv. 2014; 4: 64798

      Recent examples, see:
    • 4a Lee W.-C, Shen H.-C, Hu W.-P, Lo W.-S, Murali C, Vandavasi JK, Wang J.-J. Adv. Synth. Catal. 2012; 354: 2218
    • 4b Liu Q.-L, Chen P.-H, Liu G.-S. ACS Catal. 2013; 3: 178
    • 4c Reddy BV. S, Babu RA, Reddy MR, Reddy BJ. M, Sridhar B. RSC Adv. 2014; 4: 44629
    • 4d Munusamy S, Venkatesan S, Sathiyanarayanan KI. Tetrahedron Lett. 2015; 56: 203
    • 5a Okuma K, Yasuda T, Takeshita I, Shioji K, Yokomori Y. Tetrahedron 2007; 63: 8250
    • 5b Jaganathan A, Garzan A, Whitehead DC, Staples RJ, Borhan B. Angew. Chem. Int. Ed. 2011; 50: 2593
    • 5c Cahard E, Bremeyer N, Gaunt MJ. Angew. Chem. Int. Ed. 2013; 52: 9284
    • 5d Yin Q, You S.-L. Org. Lett. 2014; 16: 2426
    • 5e Deng Q.-H, Chen J.-R, Wei Q, Zhao Q.-Q, Lu L.-Q, Xiao W.-J. Chem. Commun. 2015; 51: 3537
  • 6 Li B, Park Y, Chang S. J. Am. Chem. Soc. 2014; 136: 1125
    • 7a Kobayashi K, Miyamoto K, Morikaea O, Konishi H. Bull. Chem. Soc. Jpn. 2005; 78: 886
    • 7b Yu Y.-J, Zhang F.-L, Cheng J, Hei J.-H, Deng W.-T, Wang Y.-F. Org. Lett. 2018; 20: 24
    • 7c Cortés González MA, Nordeman P, Gómez AB, Meyer DN, Antoni G, Schou M, Szabó KJ. Chem. Commun. 2018; 54: 4286
  • 8 Okuma K, Yasuda T, Takeshita I, Shioji K, Yokomori Y. Bull. Chem. Soc. Jpn. 2007; 80: 1824
    • 9a Wang Y.-M, Wu J, Hoong C, Rauniyar V, Toste FD. J. Am. Chem. Soc. 2012; 134: 12928
    • 9b Zhao J.-F, Duan X.-H, Yang H, Guo L.-N. J. Org. Chem. 2015; 80: 11149
  • 10 Fu W.-J, Han X, Zhu M, Xu C, Wang Z.-Q, Ji B.-M, Hao X.-Q, Song M.-P. Chem. Commun. 2016; 52: 13413
  • 11 Yang H, Duan X.-H, Zhao J.-F, Guo L.-N. Org. Lett. 2015; 17: 1998
  • 12 Wang J, Sang R.-Y, Chong X.-L, Zhao Y.-N, Fan W.-J, Li Z.-J, Zhao J.-C. Chem. Commun. 2017; 53: 7961
    • 13a Chu X.-Q, Xu X.-P, Meng H, Ji S.-J. RSC Adv. 2015; 5: 67829
    • 13b Zhu S.-L, Ji S.-J, Zhang Y. Tetrahedron 2007; 63: 9365
    • 13c Jiang R, Wu X.-J, Zhu X, Xu X.-P, Ji S.-J. Eur. J. Org. Chem. 2010; 5946
    • 13d Jiang R, Xu H.-Y, Xu X.-P, Chu X.-Q, Ji S.-J. Org. Biomol. Chem. 2011; 9: 5659
  • 14 Filler R. Chem. Rev. 1963; 63: 21

    • Recent examples, see:
    • 15a Chun S, Chung YK. Org. Lett. 2018; 20: 5583
    • 15b Zhou J, Yeung Y.-Y. Org. Biomol. Chem. 2014; 12: 7482
    • 15c Zhou L, Tan CK, Jiang X.-J, Chen F, Yeung Y.-Y. J. Am. Chem. Soc. 2010; 132: 15474
    • 15d Yu WZ, Chen F, Cheng YA, Yeung Y.-Y. J. Org. Chem. 2015; 80: 2815
    • 15e Chen J, Chng S, Zhou L, Yeung Y.-Y. Org. Lett. 2011; 13: 6456
    • 16a Ross SD, Finkelstein M, Petersen RC. J. Am. Chem. Soc. 1958; 80: 4327
    • 16b Ni S, El Remaily MA. E. A. A. A, Franzén J. Adv. Synth. Catal. 2018; 360: 4197
    • 16c Shibatomi K, Zhang Y, Yamamoto H. Chem. Asian J. 2008; 3: 1581
    • 17a Saikia I, Borah AJ, Phukan P. Chem. Rev. 2016; 116: 6837
    • 17b Huang Z, Zhan M, Zhang S.-G, Luo Q, Zhang W.-Z, Xi Z.-F. Org. Chem. Front. 2017; 4: 1785
    • 19a Copley SD, Knowles JR. J. Am. Chem. Soc. 1987; 109: 5008
    • 19b Breslow R, Maitra U, Rideout D. Tetrahedron Lett. 1983; 24: 1901
    • 20a Xie P.-Z, Wang J.-Y, Liu Y.-N, Fan J, Wo X.-Y, Fu W.-S, Sun Z.-L, Loh T.-P. Nat. Commun. 2018; 9: 1321
    • 20b Wang B, Tang L, Liu L.-Y, Li Y.-N, Yang Y, Wang Z.-Y. Green Chem. 2017; 19: 5794
  • 21 When R2 = H, only N-(2-(2-bromoacetyl)phenyl)benzamide could be obtained, and when we employed the corresponding alkynyl amide, the reaction gave N-(2-(2,2-dibromoacetyl)phenyl)benzamide as product (Scheme 8).
  • 22 See Supporting Information, Figure S2.
    • 23a Zhang M.-Z, Sheng W.-B, Jiang Q, Tian M, Yin Y, Guo C.-C. J. Org. Chem. 2014; 79: 10829
    • 23b Podgorsek A, Stavber S, Zupan M, Iskra J. Tetrahedron 2009; 65: 4429