Synlett 2019; 30(14): 1662-1666
DOI: 10.1055/s-0037-1610716
cluster
© Georg Thieme Verlag Stuttgart · New York

Catalyst-Controlled Regio- and Stereoselective Bromolactonization with Chiral Bifunctional Sulfides

Ayano Tsuchihashi
,
Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan   Email: seijishirakawa@nagasaki-u.ac.jp
› Author Affiliations
This work was supported by the Japan Society for the Promotion of Science (JSPS) (KAKENHI, Grant Number JP19K05480), the Cooperative Research Program of ‘Network Joint Research Center for Materials and Devices’ (20191310), the Tokuyama Science Foundation, the Takahashi Industrial and Economic Research Foundation, and the Shorai Foundation for Science and Technology.
Further Information

Publication History

Received: 03 April 2019

Accepted after revision: 25 April 2019

Publication Date:
20 May 2019 (online)


Published as part of the Cluster Organosulfur and Organoselenium Compounds in Catalysis

Abstract

Highly regioselective 5-exo bromolactonizations of stilbene-type carboxylic acids bearing electron-withdrawing substituents are achieved for the first time via the use of chiral bifunctional sulfide catalysts possessing a urea moiety. The chiral phthalide products are obtained in moderate to good enantioselectivities as the result of 5-exo cyclizations.

Supporting Information

 
  • References and Notes


    • For reviews on organocatalysis, see:
    • 1a Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2001; 40: 3726
    • 1b Dalko PI, Moisan L. Angew. Chem. Int. Ed. 2004; 43: 5138
    • 1c MacMillan DW. C. Nature 2008; 455: 304
    • 1d Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. Dalko PI. Wiley-VCH; Weinheim: 2013

      For recent examples of chiral sulfide catalysts, see:
    • 3a Wu H.-Y, Chang C.-W, Chein R.-J. J. Org. Chem. 2013; 78: 5788
    • 3b Ke Z, Tan CK, Chen F, Yeung Y.-Y. J. Am. Chem. Soc. 2014; 136: 5627
    • 3c Ke Z, Tan CK, Liu Y, Lee KG. Z, Yeung Y.-Y. Tetrahedron 2016; 72: 2683
    • 3d Liu X, An R, Zhang X, Luo J, Zhao X. Angew. Chem. Int. Ed. 2016; 55: 5846
    • 3e Li Q.-Z, Zhang X, Zeng R, Dai Q.-S, Liu Y, Shen X.-D, Leng H.-J, Yang K.-C, Li J.-L. Org. Lett. 2018; 20: 3700
    • 3f Cao Q, Luo J, Zhao X. Angew. Chem. Int. Ed. 2019; 58: 1315
    • 3g Okada M, Kaneko K, Yamanaka M, Shirakawa S. Org. Biomol. Chem. 2019; 17: 3747
    • 5a Chen J, Zhou L, Tan CK, Yeung Y.-Y. J. Org. Chem. 2012; 77: 999
    • 5b Chen T, Yeung Y.-Y. Org. Biomol. Chem. 2016; 14: 4571
  • 6 Nishiyori R, Tsuchihashi A, Mochizuki A, Kaneko K, Yamanaka M, Shirakawa S. Chem. Eur. J. 2018; 24: 16747

    • For reviews on phthalides, see:
    • 7a Beck JJ, Chou S.-C. J. Nat. Prod. 2007; 70: 891
    • 7b Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213

      For examples of catalytic asymmetric synthesis of chiral phthalides, see:
    • 8a Kitamura M, Ohkuma T, Inoue S, Sayo N, Kumobayashi H, Akutagawa S, Ohta T, Takaya H, Noyori R. J. Am. Chem. Soc. 1988; 110: 629
    • 8b Everaere K, Scheffler J.-L, Mortreux A, Carpentier J.-F. Tetrahedron Lett. 2001; 42: 1899
    • 8c Lei J.-G, Hong R, Yuan S.-G, Lin G.-Q. Synlett 2002; 927
    • 8d Tanaka K, Nishida G, Wada A, Noguchi K. Angew. Chem. Int. Ed. 2004; 43: 6510
    • 8e Chang H.-T, Jeganmohan M, Cheng C.-H. Chem. Eur. J. 2007; 13: 4356
    • 8f Tanaka K, Osaka T, Noguchi K, Hirano M. Org. Lett. 2007; 9: 1307
    • 8g Luo J, Wang H, Zhong F, Kwiatkowski J, Xu L.-W, Lu Y. Chem. Commun. 2012; 48: 4707
    • 8h Zhong F, Luo J, Chen G.-Y, Dou X, Lu Y. J. Am. Chem. Soc. 2012; 134: 10222
    • 8i Luo J, Jiang C, Wang H, Xu L.-W, Lu Y. Tetrahedron Lett. 2013; 54: 5261
    • 8j Luo J, Wang H, Zhong F, Kwiatkowski J, Xu L.-W, Lu Y. Chem. Commun. 2013; 49: 5775
    • 8k Liu R, Jin R, An J, Zhao Q, Cheng T, Liu G. Chem. Asian J. 2014; 9: 1388
    • 8l Han X, Dong C, Zhou H.-B. Adv. Synth. Catal. 2014; 356: 1275
    • 8m Parmar D, Maji MS, Rueping M. Chem. Eur. J. 2014; 20: 83
    • 8n Egami H, Asada J, Sato K, Hashizume D, Kawato Y, Hamashima Y. J. Am. Chem. Soc. 2015; 137: 10132
    • 8o Gelat F, Coffinet M, Lebrun S, Agbossou-Niedercorn F, Michon C, Deniau E. Tetrahedron: Asymmetry 2016; 27: 980
    • 8p Kong L, Zhao J, Cheng T, Lin J, Liu G. ACS Catal. 2016; 6: 2244
    • 8q Liu W, Hu Z.-P, Yan Y, Liao W.-W. Tetrahedron Lett. 2018; 59: 3132
    • 8r Cabrera JM, Tauber J, Krische MJ. Angew. Chem. Int. Ed. 2018; 57: 1390
  • 9 For the reaction with catalyst (S)-4d at low temperature and the reaction with another different catalyst, see Schemes S1 and S2 in the Supporting Information.
  • 10 The reaction with bromine (Br2) may proceed via a non-catalyzed reaction pathway (background reaction pathway). For a reaction using another reactive brominating reagent, see Scheme S3 in the Supporting Information.
  • 11 For other control experiments, see Scheme S4 in the Supporting Information.
  • 12 Asymmetric Bromolactonizations; General Procedure A solution of substrate 1 (0.10 mmol) and catalyst (S)-4d (10 mol%, 0.010 mmol) in CH2Cl2 (2 mL) was cooled to 0 °C. After stirring for 10 min, N-bromosuccinimide (NBS) (0.12 mmol) was added and the resulting mixture was stirred for 24 h at 0 °C. The mixture was quenched with saturated aqueous Na2SO3 (4.0 mL) at 0 °C, stirred for 10 min at 0 °C, diluted with CH2Cl2 (2 mL) and H2O (2 mL) and then warmed to room temperature. The organic materials were extracted with CH2Cl2 (3 × 5 mL) and the combined extracts dried over Na2SO4 and concentrated. (The 1H NMR analysis of the crude reaction mixture was performed at this stage to determine the regioselectivity of the bromolactonization products.) The residue was purified by flash column chromatography on silica gel (hexane/EtOAc as eluent) to give product 2. The enantioselectivity of the product 2 was determined by HPLC analysis on a chiral stationary phase. Compound 2a5 Yield: 31.9 mg (86%); colorless oil; [α]D 21 +4.4 (c = 0.87, CHCl3); 82:18 er; HPLC (Daicel Chiralpak IC-3, hexane/2-propanol = 10:1, flow rate = 0.5 mL/min, 230 nm): t R = 59.3 min (major) and 68.8 min (minor). IR (neat): 1769, 1324, 1286, 1167, 1124, 1114, 1067, 1018 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.85 (d, J = 7.2 Hz, 1 H), 7.67–7.71 (m, 2 H), 7.53–7.60 (m, 5 H), 5.96 (d, J = 6.4 Hz, 1 H), 5.16 (d, J = 6.4 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 168.9, 146.0, 140.1, 134.1, 131.1 (q, J = 32.1 Hz), 130.2, 129.0, 126.5, 126.0 (q, J = 2.5 Hz), 125.7 (m), 123.7, 123.6 (q, J = 272 Hz), 82.1, 51.8.