Synthesis 2018; 50(23): 4645-4650
DOI: 10.1055/s-0037-1610537
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Selective Synthesis of 3-Hydroxy-2-oxindoles via Cascade C–H Cycloaddition and Oxidation of α-Aminoaceto­phenones

Yan-Yan Liao
Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. of China   Email: rytang@scau.edu.cn   Email: wzheng@scau.edu.cn
,
Li Xu
Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. of China   Email: rytang@scau.edu.cn   Email: wzheng@scau.edu.cn
,
Ri-Yuan Tang*
Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. of China   Email: rytang@scau.edu.cn   Email: wzheng@scau.edu.cn
,
Wen-Xu Zheng*
Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. of China   Email: rytang@scau.edu.cn   Email: wzheng@scau.edu.cn
› Author Affiliations
We gratefully acknowledge the financial support of South China Agricultural University and the Science Technology Program Project of Guangdong Province (No. 2016B020204005).
Further Information

Publication History

Received: 18 May 2018

Accepted after revision: 06 July 2018

Publication Date:
08 August 2018 (online)


Abstract

A novel method for the synthesis of 3-hydroxy-2-oxindole (3-hydroxyindolin-2-one) derivatives by palladium-catalyzed tandem C–H cycloaddition and oxidation of α-aminoacetophenone has been developed. In the presence of Pd(OAc)2 and AgOAc, a variety of 3-hydroxy-2-oxindoles were synthesized in moderate yields. Control experiments show that the selective cycloaddition occurs prior to the oxidation is crucial for this successful chemical transformation.

Supporting Information

 
  • References

    • 1a Prakash CR. Raja S. Mini-Rev. Med. Chem. 2012; 12: 98
    • 1b Pandeya SN. Smitha S. Jyoti M. Sridhar SK. Acta Pharm. (Weinheim, Ger.) 2005; 55: 27
    • 2a England DB. Merey G. Padwa A. Org. Lett. 2007; 9: 3805
    • 2b Ghosh S. Kinthada LK. Bhunia S. Bisai A. Chem. Commun. 2012; 48: 10132
    • 2c Zhou F. Cao Z.-Y. Zhang J. Yang H.-B. Zhou J. Chem. Asian J. 2012; 7: 233
    • 2d Kinthada LK. Ghosh S. De S. Bhunia S. Dey D. Bisai A. Org. Biomol. Chem. 2013; 11: 6984
    • 2e Kinthada LK. Babu KN. Padhi D. Bisai A. Eur. J. Org. Chem. 2017; 3078
    • 2f Kinthada LK. Medisetty SR. Parida A. Babu KN. Bisai A. J. Org. Chem. 2017; 82: 8548
    • 3a Peddibhotla S. Curr. Bioact. Compd. 2009; 5: 20
    • 3b Dalpozzo R. Bartoli G. Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
    • 4a Gutierrez EG. Franz AK. e-EROS Encycl. Reagents Org. Synth. 2013; 1
    • 4b Flores MF. Pena J. Garcia-Garcia P. Garrido NM. Diez D. Curr. Org. Chem. 2013; 17: 1957
    • 5a Tang B.-X. Song R.-J. Wu C.-Y. Liu Y. Zhou M.-B. Wei W.-T. Deng G.-B. Yin D.-L. Li J.-H. J. Am. Chem. Soc. 2010; 132: 8900
    • 5b Satish G. Polu A. Ramar T. Ilangovan A. J. Org. Chem. 2015; 80: 5167
    • 6a Zhang Q.-B. Jia W.-L. Ban Y.-L. Zheng Y. Liu Q. Wu L.-Z. Chem. Eur. J. 2016; 22: 2595
    • 6b Wang B. Zhu J. Wei Y. Luo G. Qu H. Liu L.-X. Synth. Commun. 2015; 45: 2841
    • 6c Buckley BR. Fernández D.-RB. Tetrahedron Lett. 2013; 54: 843
    • 7a Jia Y.-X. Katayev D. Kündig EP. Chem. Commun. 2010; 46: 130
    • 7b Shin I. Ramgren SD. Krische MJ. Tetrahedron 2015; 71: 5776
    • 7c Yin L. Kanai M. Shibasaki M. Angew. Chem. Int. Ed. 2011; 50: 7620
    • 7d Hu J.-X. Wu H. Li C.-Y. Sheng W.-J. Jia Y.-X. Gao J.-R. Chem. Eur. J. 2011; 17: 5234
    • 8a Wang H.-L. Li Y.-M. Wang G.-W. Zhang H. Yang S.-D. Asian J. Org. Chem. 2013; 2: 486
    • 8b Gorokhovik I. Neuville L. Zhu J. Org. Lett. 2011; 13: 5536
    • 8c Sai KK. S. Esteves PM. Tanoue da Penha E. Klumpp DA. J. Org. Chem. 2008; 73: 6506
    • 9a Ren H. Wang P. Wang L. Tang Y. Org. Lett. 2015; 17: 4886
    • 9b Zhang X.-S. Zhu Q.-L. Luo F.-X. Chen G. Wang X. Shi Z.-J. Eur. J. Org. Chem. 2013; 6530
    • 9c Shibata T. Hashimoto Y. Otsuka M. Tsuchikama K. Endo K. Synlett 2011; 2075
  • 10 Ji X.-M. Zhou S.-J. Deng C.-L. Chen F. Tang R.-Y. RSC Adv. 2014; 4: 53837
  • 11 Tang R.-Y. Guo X.-K. Xiang J.-N. Li J.-H. J. Org. Chem. 2013; 78: 11163
    • 12a Zhu R.-Y. Farmer ME. Chen Y.-Q. Yu J.-Q. Angew. Chem. Int. Ed. 2016; 55: 10578
    • 12b Wencel-Delord J. Glorius F. Nat. Chem. 2013; 5: 369
    • 12c Zhang X.-S. Chen K. Shi Z.-J. Chem. Sci. 2014; 5: 2146
  • 13 Liu M. Zhang C. Ding M. Tang B. Zhang F. Green Chem. 2017; 19: 4509
  • 14 Zhu F. Zhou F. Cao Z.-Y. Wang C. Zhang Y.-X. Wang C.-H. Zhou J. Synthesis 2012; 44: 3129
  • 15 Yamamoto Y. Yohda M. Shirai T. Ito H. Miyaura N. Chem. Asian J. 2012; 7: 2446
  • 16 Liao Y.-J. Wu Y.-L. Chuang C.-P. Tetrahedron 2003; 59: 3511