Synthesis 2019; 51(06): 1365-1376
DOI: 10.1055/s-0037-1610317
paper
© Georg Thieme Verlag Stuttgart · New York

Lewis Base Promoted, Direct 1,4-Conjugate Addition to Quinone Imine Ketals: Efficient Access to Unsymmetrical Diaryl Sulfones

Teng Liu*
Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, P. R. of China
,
Jianjun Liu
,
Xianfu Shen
,
Jianbin Xu
,
Beifang Nian
,
Ni He
,
Shunqun Zeng
,
Feixiang Cheng*
Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control, Qujing Normal University, Qujing 655011, P. R. of China
› Author Affiliations
This work was supported by the Program for the Application of Fundamental Research of Yunnan Province (No. 2018FB019, 2018FD078), Yunnan Local Colleges Applied Basic Research Projects (2017FH001-020), and the National Natural Science Foundation of China (No. 21861032, 21261019).
Further Information

Publication History

Received: 14 October 2018

Accepted: 21 October 2018

Publication Date:
28 November 2018 (online)


New address: College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China 15288404381@163.com

Abstract

An alternative approach with eco-friendliness and high efficiency for the preparation of unsymmetrical diaryl sulfones has been developed. The strategy takes advantage of the reaction of sulfonyl hydrazides with quinone imine ketals catalyzed by DABCO (triethylenediamine) in ethanol. This transformation proceeds via a Lewis base promoted, direct 1,4-conjugate addition/sulfonylation/alcohol elimination reaction sequence. The protocol provides an efficient approach to access an array of diverse unsymmetrical diaryl and heterodiaryl sulfones, aryl alkyl sulfones and aryl vinyl sulfones in good to excellent yields.

Supporting Information

 
  • References

    • 1a Carreno MC. Chem. Rev. 1995; 95: 1717
    • 1b Teall M, Oakley P, Harrison T, Shaw D, Kay E, Elliott J, Gerhard U, Castro JL, Shearman M, Ball RG, Tsou NN. Bioorg. Med. Chem. Lett. 2005; 15: 2685
    • 1c Bentley R. Chem. Soc. Rev. 2005; 34: 609
    • 1d Meadows DC, Sanchez T, Neamati N, North TW, Gervay-Hague J. Bioorg. Med. Chem. 2007; 15: 1127
    • 1e Ladduwahetty T, Gilligan M, Humphries A, Merchant KJ, Fish R, McAlister G, Ivarsson M, Dominguez M, O’Connor D, MacLeod AM. Bioorg. Med. Chem. Lett. 2010; 20: 3708
    • 2a Simpkins NS. Sulfones in Organic Synthesis . Pergamon Press; Oxford: 1993
    • 2b Bhanuchandra M, Yorimitsu H, Osuka A. Org. Lett. 2016; 18: 384
    • 2c Ariki ZT, Maekawa Y, Nambo M, Crudden CM. J. Am. Chem. Soc. 2018; 140: 78
    • 2d Takahashi F, Nogi K, Yorimitsu H. Org. Lett. 2018; 20: 6601
    • 3a Kim DH, Lee J, Lee A. Org. Lett. 2018; 20: 764
    • 3b Guilbaud J, Labonde M, Selmi A, Kammoun M, Cattey H, Pirio N, Roger J, Hierso J.-C. Catal. Commun. 2018; 111: 52
    • 4a Fernández I, Khiar N. Chem. Rev. 2003; 103: 3651
    • 4b Dybtsev DN, Nuzhdin AL, Chun H, Bryliakov KP, Talsi EP, Fedin VP, Kim K. Angew. Chem. Int. Ed. 2006; 45: 916
    • 4c Nisar A, Lu Y, Zhuang J, Wang X. Angew. Chem. Int. Ed. 2011; 50: 3187
    • 5a Lhoták P, Svoboda J, Stibor I. Tetrahedron 2006; 62: 1253
    • 5b Clayden J, Senior J, Helliwell M. Angew. Chem. Int. Ed. 2009; 48: 6270
    • 5c Wang M, Chen S, Jiang X. Org. Lett. 2017; 19: 4916
    • 6a Cacchi S, Fabrizi G, Goggiamani A, Parisi LM, Bernini R. J. Org. Chem. 2004; 69: 5608
    • 6b Yadav JS, Reddy BV. S, Swamy T, Ramireddy N. Synthesis 2004; 1849
    • 6c Umierski N, Manolikakes G. Org. Lett. 2013; 15: 188
    • 6d Konovalova SA, Avdeenko AP, Santalova AA, D’yakonenko VV, Palamarchuk GV, Shishkin OV. Russ. J. Org. Chem. 2014; 50: 1757
    • 6e Nandi GC. Synth. Commun. 2017; 47: 319
    • 6f Xing B, Ni C, Hu J. Chin. J. Chem. 2018; 36: 206
    • 6g Liu N.-W, Liang S, Margraf N, Shaaban S, Luciano V, Drost M, Manolikakes G. Eur. J. Org. Chem. 2018; 1208
    • 6h Zhou Y, Cao W.-B, Zhang L.-L, Xu X.-P, Ji S.-J. J. Org. Chem. 2018; 83: 6056
    • 6i Smith JD, Ansari TN, Andersson MP, Dongari Y, Ibrahim F, Liang S, Hammond GB, Gallou F, Handa S. Green Chem. 2018; 20: 1784
    • 6j Chen F, Chacón-Huete F, El-Husseini H, Forgione P. Synthesis 2018; 50: 1914
    • 6k Xie L.-Y, Peng S, Liu F, Chen G.-R, Xia W, Yu X, Li W.-F, Cao Z, He W.-M. Org. Chem. Front. 2018; 5: 2604
    • 7a Bandgar BP, Bettigeri SV, Phopase J. Org. Lett. 2004; 6: 2105
    • 7b Jang DO, Moon KS, Cho DH, Kim J.-G. Tetrahedron Lett. 2006; 47: 6063
    • 7c Cooke M, Clark J, Breeden S. J. Mol. Catal. A: Chem. 2009; 303: 132
    • 7d Hu F, Lei X. ChemCatChem 2015; 7: 1539
    • 7e Liang H.-W, Jiang K, Ding W, Yuan Y, Shuai L, Chen Y.-C, Wei Y. Chem. Commun. 2015; 51: 16928
    • 7f Wei J, Jiang J, Xiao X, Lin D, Deng Y, Ke Z, Jiang H, Zeng W. J. Org. Chem. 2016; 81: 946
    • 7g Fu Y, Xu Q.-S, Li Q.-Z, Du Z, Wang K.-H, Huang D, Hu Y. Org. Biomol. Chem. 2017; 15: 2841
    • 8a Emmett EJ, Hayter BR, Willis MC. Angew. Chem. Int. Ed. 2013; 52: 12679
    • 8b Deeming AS, Russell CJ, Hennessy AJ, Willis MC. Org. Lett. 2014; 16: 150
    • 8c Emmett EJ, Hayter BR, Willis MC. Angew. Chem. Int. Ed. 2014; 53: 10204
    • 8d Rocke BN, Bahnck KB, Herr M, Lavergne S, Mascitti V, Perreault C, Polivkova J, Shavnya A. Org. Lett. 2014; 16: 154
    • 8e Liu T, Zhou W, Wu J. Org. Lett. 2017; 19: 6638
    • 8f Chen Y, Willis MC. Chem. Sci. 2017; 8: 3249
    • 8g Yang D, Sun P, Wei W, Liu F, Zhang H, Wang H. Chem. Eur. J. 2018; 24: 4423
    • 8h Xia H, An Y, Zeng X, Wu J. Org. Chem. Front. 2018; 5: 366
    • 8i Zhou K, Chen M, Yao L, Wu J. Org. Chem. Front. 2018; 5: 371
    • 9a Gund SH, Shelkara RS, Nagarkar JM. RSC Adv. 2015; 5: 62926
    • 9b Liang S, Liu N.-W, Manolikakes G. Adv. Synth. Catal. 2016; 358: 159
    • 10a Yue H, Zhu C, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 1371
    • 10b Liu N.-W, Hofman K, Herbert A, Manolikakes G. Org. Lett. 2018; 20: 760
    • 10c Cabrera-Afonso MJ, Lu Z.-P, Kelly CB, Lang SB, Dykstra R, Gutierrez O, Molander GA. Chem. Sci. 2018; 9: 3186
    • 10d Muralirajan K, Kancherla R, Rueping M. Angew. Chem. Int. Ed. 2018; 57: 14787
  • 11 Avdeenko AP, Evgrafova NI. Zh. Org. Khim. 1992; 28: 1479
    • 12a Wu X, Wang Y. Synlett 2014; 25: 1163
    • 12b Fu R, Hao W.-J, Wu Y.-N, Wang N.-N, Tu S.-J, Li G, Jiang B. Org. Chem. Front. 2016; 3: 1452
    • 12c Chen G, Zhang X, Zeng Z, Peng W, Liang Q, Liu J. ChemistrySelect 2017; 2: 1979
    • 12d Li P.-G, Li Y.-C, Zhu T, Zou L.-H, Wu Z. Eur. J. Org. Chem. 2017; 6081
    • 12e Wu X, Wang Y. New J. Chem. 2018; 42: 10953
    • 13a Li B, Li Y, Yu L, Wu X, Wei W. Tetrahedron 2017; 73: 2760
    • 13b Taneja N, Peddinti RK. Eur. J. Org. Chem. 2017; 5306
    • 14a Liu T, Zhou M, Yuan T, Fu B, Wang X, Peng F, Shao Z. Adv. Synth. Catal. 2017; 359: 89
    • 14b Liu T, Liu J, He C, Cheng F. Chin. J. Org. Chem. 2017; 37: 2609
    • 14c Liu T, Liu J, Xia S, Meng J, Shen X, Zhu X, Chen W, Sun C, Cheng F. ACS Omega 2018; 3: 1409
  • 15 Santos MM. M, Moreira R. Mini-Rev. Med. Chem. 2007; 7: 1040
  • 16 CCDC 1862387 (3aa) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 17 Wang B, Tang L, Liu L, Li Y, Yang Y, Wang Z. Green Chem. 2017; 19: 5794
    • 18a Hashimoto T, Nakatsu H, Takiguchi Y, Maruoka K. J. Am. Chem. Soc. 2013; 135: 16010
    • 18b Liu L, Chen K, Wu W.-Z, Wang P.-F, Song H.-Y, Sun H, Wen X, Xu Q.-L. Org. Lett. 2017; 19: 3823