Synlett 2018; 29(16): 2155-2160
DOI: 10.1055/s-0037-1609581
cluster
© Georg Thieme Verlag Stuttgart · New York

Toward a Catalytic Atroposelective Synthesis of Diaryl Ethers Through C(sp2)–H Alkylation with Nitroalkanes

Andrew N. Dinh
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA   Email: Jgustafson@sdsu.edu
,
Ryan R. Noorbehesht
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA   Email: Jgustafson@sdsu.edu
,
Sean T. Toenjes
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA   Email: Jgustafson@sdsu.edu
,
Amy C. Jackson
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA   Email: Jgustafson@sdsu.edu
,
Mirza A. Saputra
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA   Email: Jgustafson@sdsu.edu
,
Sean M. Maddox
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA   Email: Jgustafson@sdsu.edu
,
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA   Email: Jgustafson@sdsu.edu
› Author Affiliations
This work was supported by a grant from NIGMS (1R35GM124637). A.N.D. and S.T.T. were supported by the SDSU University Graduate Fellowship. A.C.J. is grateful for support from the NIH-funded Initiative for Maximizing Student Development (IMSD) (5R25GMO58906).
Further Information

Publication History

Received: 10.05.2018

Accepted after revision: 21.06.2018

Publication Date:
31 July 2018 (online)


Published as part of the Cluster Atropisomerism

Abstract

We report studies toward a small-molecule-catalytic approach to access atropisomeric diaryl ethers that proceeds through a C(sp2)–H alkylation using nitroalkanes as the alkyl source. A quaternary ammonium salt derived from quinine, containing a sterically hindered urea at the C-9 position, was found to effect atroposelective C(sp2)–H alkylation with moderate to good enantioselectivities across several naphthoquinone-containing diaryl ethers. Products could then be isolated in >95:5 er after one round of trituration. For several substrates that were evaluated, we obtained nitroethylated products in similar yields and selectivities.

Supporting Information

 
  • References and Notes

  • 1 Bringmann G. Mortimer AJ. P. Keller PA. Gresser MJ. Garner J. Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
  • 2 Kumarasamy E. Raghunathan R. Sibi MP. Sivaguru J. Chem. Rev. 2015; 115: 11239
  • 3 Smyth JE. Butler NM. Keller PA. Nat. Prod. Rep. 2015; 32: 1562
  • 4 Clayden J. Moran WJ. Edwards PJ. LaPlante SR. Angew. Chem. Int. Ed. 2009; 48: 6398
  • 5 Clayden J. Chem. Commun. 2004; 127
  • 6 Ōki M. Top. Stereochem. 1983; 14: 1
  • 7 Smith DE. Marquez I. Lokensgard ME. Rheingold AL. Hecht DA. Gustafson JL. Angew. Chem. Int. Ed. 2015; 54: 11754
  • 8 Barrett KT. Miller SJ. Org. Lett. 2015; 17: 580
  • 9 Barrett KT. Miller SJ. J. Am. Chem. Soc. 2013; 135: 2963
  • 10 Gustafson JL. Lim D. Miller SJ. Science 2010; 328: 1251
  • 11 Diener ME. Metrano AJ. Kusano S. Miller SJ. J. Am. Chem. Soc. 2015; 137: 12369
  • 12 Clayden J. Lai LW. Helliwell M. Tetrahedron 2004; 60: 4399
  • 13 Cardenas MM. Toenjes ST. Nalbandian CJ. Gustafson JL. Org. Lett. 2018; 20: 2037
  • 14 Toenjes ST. Gustafson JL. Future Med. Chem. 2018; 10: 409
  • 15 Nalbandian CJ. Hecht DE. Gustafson JL. Synlett 2016; 27: 977
  • 16 Watterson SH. De Lucca GV. Shi Q. Langevine CM. Liu Q. Batt DG. Beaudoin Bertrand M. Gong H. Dai J. Yip S. Li P. Sun D. Wu D.-R. Wang C. Zhang Y. Traeger SC. Pattoli MA. Skala S. Cheng L. Obermeier MT. Vickery R. Discenza LN. D’Arienzo CJ. Zhang Y. Heimrich E. Gillooly KM. Taylor TL. Pulicicchio C. McIntyre KW. Galella MA. Tebben AJ. Muckelbauer JK. Chang C.-Y. Rampulla R. Mathur A. Salter-Cid L. Barrish JC. Carter PH. Fura A. Burke JR. Tino JA. J. Med. Chem. 2016; 59: 9173
  • 17 Chen Y.-H. Cheng D.-J. Zhang J. Wang Y. Liu X.-Y. Tan B. J. Am. Chem. Soc. 2015; 137: 15062
  • 18 Chen Y.-H. Qi L.-W. Fang F. Tan B. Angew. Chem. Int. Ed. 2017; 56: 16308
  • 19 Jolliffe JD. Armstrong RJ. Smith MD. Nat. Chem. 2017; 9: 558
  • 20 LaPlante SR. Fader LD. Fandrick KR. Fandrick DR. Hucke O. Kemper R. Miller SP. F. Edwards PJ. J. Med. Chem. 2011; 54: 7005
  • 21 Nicolaou KC. Boddy CN. C. J. Am. Chem. Soc. 2002; 124: 10451
  • 22 Clayden J. Kubinski PM. Sammiceli F. Helliwell M. Diorazio L. Tetrahedron 2004; 60: 4387
  • 23 Betson MS. Clayden J. Worrall CP. Peace S. Angew. Chem. Int. Ed. 2006; 45: 5803
  • 24 Clayden J. Worrall CP. Moran WJ. Helliwell M. Angew. Chem. Int. Ed. 2008; 47: 3234
  • 25 Yuan B. Page A. Worrall CP. Escalettes F. Willies SC. McDouall JJ. W. Turner NJ. Clayden J. Angew. Chem. Int. Ed. 2010; 49: 7010
  • 26 Staniland S. Adams RW. McDouall JJ. W. Maffucci I. Contini A. Grainger DM. Turner NJ. Clayden J. Angew. Chem. Int. Ed. 2016; 55: 10755
  • 27 Iwamura H. Mislow K. Acc. Chem. Res. 1988; 21: 175
  • 28 Maddox SM. Dawson GA. Rochester NC. Ayonon AB. Moore CE. Rheingold AL. Gustafson JL. ACS Catal. 2018; 8: 5443
  • 29 Manna MS. Mukherjee S. J. Am. Chem. Soc. 2015; 137: 130
  • 30 Sarkar R. Mukherjee S. Org. Lett. 2016; 18: 6160
  • 31 Substituted Diaryl Ether Naphthoquinones 2; General Procedure A scintillation vial was charged with 3 Å powdered MS (10 mg) and an oven-dried stirrer bar. The sieves were activated, and toluene was syringed into the vial (0.1 M). The appropriate diaryl ether naphthoquinone 1 (0.026 mmol, 1 equiv), K3PO4 (0.26 mmol, 10 equiv), quaternary ammonium salt catalyst C2 (.0026 mmol, 0.1 equiv), and NO2Me (0.26 mmol, 10 equiv) were added sequentially. The mixture was stirred at r.t. for 36 h then then diluted with toluene and filtered through Celite to remove excess base and MS. Purification by flash column chromatography [silica gel, hexanes–CH2Cl2 (100:0 to 80:20)] gave the desired methylated and nitroethylated products. (~3–68% yield).
  • 32 2-[2-tert-Butyl-4,6-dichlorophenoxy]-3-methylnaphthoquinone (2a) Bright-yellow solid; yield: 6.8 mg (68%); mp 123 °C. 1H NMR (400 MHz, CDCl3): δ = 8.13 (dd, J = 7.7, 1.3 Hz, 1 H), 7.91 (dd, J = 7.5, 1.5 Hz, 1 H), 7.72 (td, J = 7.5, 1.5 Hz, 1 H), 7.66 (td, J = 7.5, 1.5 Hz, 1 H), 7.32 (d, J = 2.5 Hz, 1 H), 7.18 (d, J = 2.5 Hz, 1 H), 2.26 (s, 3 H), 1.38 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 185.01, 178.23, 154.23, 150.33, 142.76, 134.01, 133.37, 131.95, 130.49, 129.17, 128.39, 127.62, 126.47, 126.40, 126.29, 125.23, 35.85, 29.99, 9.73. MS (APCI): m/z [M + H]+ calcd for C21H18Cl2O3: 390.3; found: 390.3.
  • 33 2-(2-Bromo-6-tert-butyl-4-methylphenoxy)-3-(2-nitroethyl)naphthoquinone (3f) Orange solid; yield: 3.8 mg (30%); mp 135 °C; 1H NMR (500 MHz, CDCl3): δ = 8.13 (dd, J = 7.6, 1.3 Hz, 1 H), 7.93 (dd, J = 7.7, 1.3 Hz, 1 H), 7.75 (td, J = 7.6, 1.4 Hz, 1 H), 7.68 (td, J = 7.5, 1.4 Hz, 1 H), 7.21 (d, J = 2.0 Hz, 1 H), 7.17 (d, J = 2.2 Hz, 1 H), 4.80–4.68 (m, 2 H), 3.59 (ddd, J = 13.2, 9.0, 6.9 Hz, 1 H), 3.43 (ddd, J = 13.2, 8.8, 6.0 Hz, 1 H), 2.35 (s, 3 H), 1.37 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 184.16, 177.98, 155.80, 149.75, 135.52, 134.29, 133.68, 131.66, 130.66, 128.41, 127.85, 127.48, 126.70, 126.41, 124.44, 71.98, 35.54, 30.32, 29.70, 22.44, 20.94. MS (APCI): m/z [M + H]+ calcd for C23H22BrNO5: 473.3; found: 473.3.
  • 34 Diedrich C. Grimme S. J. Phys. Chem. A 2003; 107: 2524
  • 35 Berova N. Di Bari L. Pescitelli G. Chem. Soc. Rev. 2007; 36: 914
  • 36 Li X.-C. Ferreira D. Ding Y. Curr. Org. Chem. 2010; 14: 1678