Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(12): 2337-2346
DOI: 10.1055/s-0037-1609445
DOI: 10.1055/s-0037-1609445
paper
Iodine-Catalyzed Oxidative Cross-Dehydrogenative Coupling of Quinoxalinones and Indoles: Synthesis of 3-(Indol-2-yl)quinoxalin-2-one under Mild and Ambient Conditions
We acknowledge financial support from Thailand Research Fund (RSA5980008 and DBG6080007), Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission (OHEC), Ministry of Education and Faculty of Science, and Mahidol University.Further Information
Publication History
Received: 25 January 2018
Accepted after revision: 09 March 2018
Publication Date:
04 April 2018 (online)
Abstract
A highly efficient iodine-catalyzed oxidative cross-dehydrogenative coupling reaction of quinoxalinones and indoles has been developed. Without the requirement of peroxide and acid, this reaction utilizes a catalytic amount of molecular iodine to facilitate the C–C bond formation under ambient air. This simple and easy-to-handle protocol represents an interesting synthetic alternative with a good scope and functional group compatibility.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609445.
- Supporting Information
-
References
- 1a Li C.-J. Acc. Chem. Res. 2009; 42: 335
- 1b Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
- 1c Waterman R. Chem. Soc. Rev. 2013; 42: 5629
- 1d Li C.-J. From C–H to C–C Bonds: Cross-Dehydrogenative-Coupling . Royal Society of Chemistry; Cambridge: 2014
- 1e Kozlowski MC. Acc. Chem. Res. 2017; 50: 638
- 1f Qin Y. Zhu L. Luo S. Chem. Rev. 2017; 117: 9433
- 1g Lakshman MK. Vuram PK. Chem. Sci. 2017; 8: 5845
- 2a Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
- 2b Le Bras J. Muzart J. Chem. Rev. 2011; 111: 1170
- 2c Shi Z. Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3381
- 2d Song G. Wang F. Li X. Chem. Soc. Rev. 2012; 41: 3651
- 2e Mousseau JJ. Charette AB. Acc. Chem. Res. 2013; 46: 412
- 2f Li B. Dixneuf PH. Chem. Soc. Rev. 2013; 42: 5744
- 2g Girard SA. Knauber T. Li CJ. Angew. Chem. Int. Ed. 2014; 53: 74
- 2h Yang Y. Lan J. You J. Chem. Rev. 2017; 117: 8787
- 2i Pan C. Huang B. Hu W. Feng X. Yu J.-T. J. Org. Chem. 2016; 81: 2087
- 2j Sharma R. Abdullaha M. Bharate SB. J. Org. Chem. 2017; 82: 9786
- 2k Chen X. Cui X. Yang F. Wu Y. Org. Lett. 2015; 17: 1445
- 2l Varun BV. Dhineshkumar J. Bettadapur KR. Siddaraju Y. Alagiri K. Prabhu KR. Tetrahedron Lett. 2017; 58: 803
- 3 Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
- 4a He C.-Y. Fan S. Zhang X. J. Am. Chem. Soc. 2010; 132: 12850
- 4b Gong X. Song G. Zhang H. Li X. Org. Lett. 2011; 13: 1766
- 4c Wu Y. Li B. Mao F. Li X. Kwong FY. Org. Lett. 2011; 13: 3258
- 4d Liu W. Li Y. Wang Y. Kuang C. Org. Lett. 2013; 15: 4682
- 4e Liu W. Yu X. Li Y. Kuang C. Chem. Commun. 2014; 50: 9291
- 4f Storr TE. Namata F. Greaney MF. Chem. Commun. 2014; 50: 13275
- 4g Bartoccini F. Cannas DM. Fini F. Piersanti G. Org. Lett. 2016; 18: 2762
- 4h Kianmehr E. Fardpour M. Kharat AN. Eur. J. Org. Chem. 2017; 3017
- 5a Yin W. He C. Chen M. Zhang H. Lei A. Org. Lett. 2009; 11: 709
- 5b Jin L.-K. Wan L. Feng J. Cai C. Org. Lett. 2015; 17: 4726
- 5c Luo F.-X. Cao Z.-C. Zhao H.-W. Wang D. Zhang Y.-F. Xu X. Shi Z.-J. Organometallics 2017; 36: 18
- 5d Wang X. Xie P. Qiu R. Zhu L. Liu T. Li Y. Iwasaki T. Au C.-T. Xu X. Xia Y. Yin S.-F. Kambe N. Chem. Commun. 2017; 53: 8316
- 5e Soni V. Khake SM. Punji B. ACS Catal. 2017; 7: 4202
- 6a Li Z. Bohle DS. Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
- 6b Fan S. Chen Z. Zhang X. Org. Lett. 2012; 14: 4950
- 6c Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
- 6d Huang X.-F. Salman M. Huang Z.-Z. Chem. Eur. J. 2014; 20: 6618
- 6e Wang R. Li Y. Jin R.-X. Wang X.-S. Chem. Sci. 2017; 8: 3838
- 7a Shirakawa E. Uchiyama N. Hayashi T. J. Org. Chem. 2011; 76: 25
- 7b Brzozowski M. Forni JA. Savage GP. Polyzos A. Chem. Commun. 2015; 51: 334
- 7c Liu L.-W. Wang Z.-Z. Zhang H.-H. Wang W.-S. Zhang J.-Z. Tang Y. Chem. Commun. 2015; 51: 9531
- 7d Su H. Wang L. Rao H. Xu H. Org. Lett. 2017; 19: 2226
- 8a Kupper FC. Feiters MC. Olofsson B. Kaiho T. Yanagida S. Zimmermann MB. Carpenter LJ. Luther GW. III. Lu Z. Jonsson M. Kloo L. Angew. Chem. Int. Ed. 2011; 50: 11598
- 8b Finkbeiner P. Nachtsheim BJ. Synthesis 2013; 45: 979
- 8c Ren Y.-M. Cai C. Yang R.-C. RSC Adv. 2013; 3: 7182
- 8d Wu X.-F. Gong J.-L. Qi X. Org. Biomol. Chem. 2014; 12: 5807
- 8e Yusubov MS. Zhdankin VV. Resource-Efficient Technol. 2015; 1: 49
- 8f Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 8g Kohlhepp SV. Gulder T. Chem. Soc. Rev. 2016; 45: 6270
- 9a Wan C. Gao L. Wang Q. Zhang J. Wang Z. Org. Lett. 2010; 12: 3902
- 9b Wang Q. Wan C. Gu Y. Zhang J. Gao L. Wang Z. Green Chem. 2011; 13: 578
- 9c Yan Y. Wang Z. Chem. Commun. 2011; 47: 9513
- 9d Tian J.-S. Ng KW. J. Wong J.-R. Loh T.-P. Angew. Chem. Int. Ed. 2012; 51: 9105
- 9e Liu D. Lei A. Chem. Asian J. 2015; 10: 806
- 9f Wu X. Geng X. Zhao P. Wu Y.-D. Wu A.-X. Org. Lett. 2017; 19: 4584
- 10a Joule JA. Mills K. Heterocyclic Chemistry . 4th ed. Blackwell Science; Oxford: 2000
- 10b Akins PT. Atkinson RP. Curr. Med. Res. Opin. 2002; 18: 9
- 10c Mamedov VA. Zhukova NA. Prog. Heterocycl. Chem. 2013; 25: 1
- 11a Rangisetty JB. Gupta CN. V. H. B. Prasad AL. Srinivas P. Sridhar N. Parimoo P. Veeranjaneyulu A. J. Pharm. Pharmacol. 2001; 53: 1409
- 11b Carta A. Piras S. Loriga G. Paglietti G. Mini-Rev. Med. Chem. 2006; 6: 1179
- 11c Li X. Yang K.-H. Li W.-L. Xu W.-F. Drugs Future 2006; 31: 979
- 11d Chen D. Bao W. Adv. Synth. Catal. 2010; 352: 955
- 11e Jeon SO. Lee JY. J. Mater. Chem. 2012; 22: 7239
- 11f Quinn J. Guo C. Ko L. Sun B. He Y. Li Y. RSC Adv. 2016; 6: 22043
- 12a Heldin CH. Westermark B. Cell Regul. 1990; 1: 555
- 12b Myers MR. He W. Hanney B. Setzer N. Maguire MP. Zulli A. Bilder G. Galzcinski H. Amin D. Needle S. Spada AP. Bioorg. Med. Chem. Lett. 2003; 13: 3091
- 12c He W. Myers MR. Hanney B. Spada AP. Bilder G. Galzcinski H. Amin D. Needle S. Page K. Jayyosi Z. Perrone MH. Bioorg. Med. Chem. Lett. 2003; 13: 3097
- 12d Gazit A. Yee K. Uecker A. Bohmer FD. Sjoblom T. Ostman A. Waltenberger J. Golomb G. Banai S. Heinrich MC. Levitzki A. Bioorg. Med. Chem. 2003; 11: 2007
- 12e Nixey T. Tempest P. Hulme C. Tetrahedron Lett. 2002; 43: 1637
- 13a Aoki K. Obata T. Yamazaki Y. Mori Y. Hirokawa H. Koseki J. Hattori T. Niitsu K. Takeda S. Aburada M. Miyamoto K. Chem. Pharm. Bull. 2007; 55: 255
- 13b Aoki K. Koseki J. Takeda S. Aburada M. Miyamoto K. Chem. Pharm. Bull. 2007; 55: 922
- 13c Han Y.-Y. Wu Z.-J. Zhang X.-M. Yuan W.-C. Tetrahedron Lett. 2010; 51: 2023
- 14 Utepova IA. Trestsova MA. Chupakhin ON. Charushin VN. Rempel AA. Green Chem. 2015; 17: 4401
- 15a Yotphan S. Beukeaw D. Reutrakul V. Synthesis 2013; 45: 936
- 15b Buathongjan C. Beukeaw D. Yotphan S. Eur. J. Org. Chem. 2015; 1575
- 15c Yotphan S. Sumunnee L. Beukeaw D. Buathongjan C. Reutrakul V. Org. Biomol. Chem. 2016; 14: 590
- 15d Sumunnee L. Buathongjan C. Pimpasri C. Yotphan S. Eur. J. Org. Chem. 2017; 1025
- 16 Beukeaw D. Udomsasporn K. Yotphan S. J. Org. Chem. 2015; 80: 3447
- 17a Bandgar BP. Shaikh KA. Tetrahedron Lett. 2003; 44: 1959
- 17b Yadav JS. Reddy BV. S. Shubashree S. Sadashiv K. Tetrahedron Lett. 2004; 45: 2951
- 17c Banik BK. Fernandez M. Alvarez C. Tetrahedron Lett. 2005; 46: 2479
- 17d Wu W.-B. Huang J.-M. Org. Lett. 2012; 14: 5832
- 17e Singh N. Singh KN. Synlett 2012; 23: 2116
- 17f Ge W. Wei Y. Green Chem. 2012; 14: 2066
- 17g Lin C. Hsu J. Sastry MN. V. Fang H. Tu Z. Liu J.-T. Ching-Fa Y. Tetrahedron 2005; 61: 11751
- 17h Heiden D. Bozkus S. Klussmann M. Breugst M. J. Org. Chem. 2017; 82: 4037
- 18 Gupta A. Deshmukh MS. Jain N. J. Org. Chem. 2017; 82: 4784
- 19 Carrër A. Brion J.-D. Messaoudi S. Alami M. Org. Lett. 2013; 15: 5606
- 20 See the Supporting Information for more details.
- 21a Nobuta T. Fujiya A. Tada N. Miura T. Itoh A. Synlett 2012; 23: 2975
- 21b Sudo Y. Yamaguchi E. Itoh A. Org. Lett. 2017; 19: 1610
- 22a Lamani M. Prabhu KR. J. Org. Chem. 2011; 76: 7938
- 22b Gao Q. Liu S. Wu X. Zhang J. Wu A. J. Org. Chem. 2015; 80: 5984
- 22c Zhang Z. Pi C. Tong H. Cui X. Wu Y. Org. Lett. 2017; 19: 440
- 23a Jereb M. Vražič D. Org. Biomol. Chem. 2013; 11: 1978
- 23b Huang H.-Y. Wu H.-R. Wei F. Wang D. Liu L. Org. Lett. 2015; 17: 3702
- 23c Wu S.-X. Zhang Y.-K. Shi H.-W. Yan J. Chin. Chem. Lett. 2016; 27: 1519
- 23d Liu X. Cui H. Yang D. Dai S. Zhang G. Wei W. Wang H. Catal. Lett. 2016; 146: 1743
- 23e Wang Q.-D. Yang J.-M. Fang D. Ren J. Zeng B.-B. Tetrahedron Lett. 2017; 58: 2877
For selected reviews, see:
For selected reviews and recent examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected reviews on synthetic use of molecular iodine, see:
For selected examples, see:
For reviews, see:
For selected examples of iodine-mediated/catalyzed indole functionalization, see: