J Knee Surg 2017; 30(08): 736-745
DOI: 10.1055/s-0037-1603637
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Sagittal Plane Corrections around the Knee

David Dejour
1   Department of Knee Surgery, LyonOrthoClinic, Lyon, France
,
Giuseppe La Barbera
1   Department of Knee Surgery, LyonOrthoClinic, Lyon, France
,
Stefano Pasqualotto
1   Department of Knee Surgery, LyonOrthoClinic, Lyon, France
,
Marco Valoroso
1   Department of Knee Surgery, LyonOrthoClinic, Lyon, France
,
Luca Nover
2   Department of R&D, ReSurg SA, Nyon, Vaud, Switzerland
,
Ryan Reynolds
2   Department of R&D, ReSurg SA, Nyon, Vaud, Switzerland
,
Mo Saffarini
2   Department of R&D, ReSurg SA, Nyon, Vaud, Switzerland
› Author Affiliations
Further Information

Publication History

12 January 2017

18 April 2017

Publication Date:
05 June 2017 (online)

Abstract

Stability of the knee joint depends on soft tissues integrity and bony balance in the frontal and sagittal planes during gait. Although frontal plane imbalance is a well-known knee pathology, commonly treated by high tibial osteotomy, sagittal plane imbalance is less common, with fewer and more challenging surgical treatment options. The purpose of this review is to describe the biomechanical effects of sagittal knee imbalances and to outline the indications, techniques, and outcomes of sagittal knee osteotomies. The article details the reference axes and methods to measure posterior tibial slope (PTS), the principal indicator of sagittal imbalance, and its influence on anteroposterior tibial translations and rotational stability of the joint. The authors also outline the roles of the anterior and posterior cruciate ligaments in maintaining sagittal balance, with focus on the associations between PTS and ligament deficiencies, as well as posterolateral corner injuries. Different techniques and indications of tibial osteotomy in the sagittal plane, both above and below the anterior tibial tubercle, are compared in terms of technical difficulty, clinical benefits, and complication rates. The authors conclude on the importance of understanding sagittal knee imbalance, particularly in cases of ligament deficiencies, where the deformity can be the primary cause for lesions. Surgeons must identify the underlying deformities associated with sagittal imbalance, which can be recognized on weight-bearing X-rays and magnetic resonance imaging scans. Different techniques of sagittal osteotomies offer effective treatments for certain indications and should be considered in selected cases for unstable knees with ligament lesions.

 
  • References

  • 1 Brinkman JM, Lobenhoffer P, Agneskirchner JD, Staubli AE, Wymenga AB, van Heerwaarden RJ. Osteotomies around the knee: patient selection, stability of fixation and bone healing in high tibial osteotomies. J Bone Joint Surg Br 2008; 90 (12) 1548-1557
  • 2 Coventry MB. Upper tibial osteotomy. Clin Orthop Relat Res 1984; (182) 46-52
  • 3 Coventry MB, Ilstrup DM, Wallrichs SL. Proximal tibial osteotomy. A critical long-term study of eighty-seven cases. J Bone Joint Surg Am 1993; 75 (02) 196-201
  • 4 Naudie D, Bourne RB, Rorabeck CH, Bourne TJ. The Install Award. Survivorship of the high tibial valgus osteotomy. A 10- to -22-year followup study. Clin Orthop Relat Res 1999; (367) 18-27
  • 5 Cantin O, Magnussen RA, Corbi F, Servien E, Neyret P, Lustig S. The role of high tibial osteotomy in the treatment of knee laxity: a comprehensive review. Knee Surg Sports Traumatol Arthrosc 2015; 23 (10) 3026-3037
  • 6 El-Azab H, Glabgly P, Paul J, Imhoff AB, Hinterwimmer S. Patellar height and posterior tibial slope after open- and closed-wedge high tibial osteotomy: a radiological study on 100 patients. Am J Sports Med 2010; 38 (02) 323-329
  • 7 Lustig S, Scholes CJ, Costa AJ, Coolican MJ, Parker DA. Different changes in slope between the medial and lateral tibial plateau after open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 2013; 21 (01) 32-38
  • 8 Lustig S, Scholes CJ, Leo SP, Coolican M, Parker DA. Influence of soft tissues on the proximal bony tibial slope measured with two-dimensional MRI. Knee Surg Sports Traumatol Arthrosc 2013; 21 (02) 372-379
  • 9 Nha KW, Kim HJ, Ahn HS, Lee DH. Change in posterior tibial slope after open-wedge and closed-wedge high tibial osteotomy: a meta-analysis. Am J Sports Med 2016; 44 (11) 3006-3013
  • 10 Smith TO, Sexton D, Mitchell P, Hing CB. Opening- or closing-wedged high tibial osteotomy: a meta-analysis of clinical and radiological outcomes. Knee 2011; 18 (06) 361-368
  • 11 Savarese E, Bisicchia S, Romeo R, Amendola A. Role of high tibial osteotomy in chronic injuries of posterior cruciate ligament and posterolateral corner. J Orthop Traumatol 2011; 12 (01) 1-17
  • 12 Alentorn-Geli E, Mendiguchía J, Samuelsson K. , et al. Prevention of non-contact anterior cruciate ligament injuries in sports. Part II: systematic review of the effectiveness of prevention programmes in male athletes. Knee Surg Sports Traumatol Arthrosc 2014; 22 (01) 16-25
  • 13 Sturnick DR, Vacek PM, DeSarno MJ. , et al. Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. Am J Sports Med 2015; 43 (04) 839-847
  • 14 Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC. Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 2003; 31 (06) 831-842
  • 15 Waiwaiole A, Gurbani A, Motamedi K. , et al. Relationship of ACL injury and posterior tibial slope with patient age, sex, and race. Orthop J Sports Med 2016; 4 (11) 1-4
  • 16 de Morais Filho MC, Neves DL, Abreu FP, Juliano Y, Guimarães L. Treatment of fixed knee flexion deformity and crouch gait using distal femur extension osteotomy in cerebral palsy. J Child Orthop 2008; 2 (01) 37-43
  • 17 Novacheck TF, Stout JL, Gage JR, Schwartz MH. Distal femoral extension osteotomy and patellar tendon advancement to treat persistent crouch gait in cerebral palsy. Surgical technique. J Bone Joint Surg Am 2009; 91 (Suppl. 02) 271-286
  • 18 Rutz E, Gaston MS, Camathias C, Brunner R. Distal femoral osteotomy using the LCP pediatric condylar 90-degree plate in patients with neuromuscular disorders. J Pediatr Orthop 2012; 32 (03) 295-300
  • 19 Stout JL, Gage JR, Schwartz MH, Novacheck TF. Distal femoral extension osteotomy and patellar tendon advancement to treat persistent crouch gait in cerebral palsy. J Bone Joint Surg Am 2008; 90 (11) 2470-2484
  • 20 Taylor D, Connor J, Church C. , et al. The effectiveness of posterior knee capsulotomies and knee extension osteotomies in crouched gait in children with cerebral palsy. J Pediatr Orthop B 2016; 25 (06) 543-550
  • 21 Mehta SN, Mukherjee AK. Flexion osteotomy of the femur for genu recurvatum after poliomyelitis. J Bone Joint Surg Br 1991; 73 (02) 200-202
  • 22 Al-Aubaidi Z, Lundgaard B, Pedersen NW. Anterior distal femoral hemiepiphysiodesis in the treatment of fixed knee flexion contracture in neuromuscular patients. J Child Orthop 2012; 6 (04) 313-318
  • 23 Caviglia HA, Perez-Bianco R, Galatro G, Duhalde C, Tezanos-Pinto M. Extensor supracondylar femoral osteotomy as treatment for flexed haemophilic knee. Haemophilia 1999; 5 (Suppl. 01) 28-32
  • 24 Mortazavi SM, Heidari P, Esfandiari H, Motamedi M. Trapezoid supracondylar femoral extension osteotomy for knee flexion contractures in patients with haemophilia. Haemophilia 2008; 14 (01) 85-90
  • 25 DelBello DA, Watts HG. Distal femoral extension osteotomy for knee flexion contracture in patients with arthrogryposis. J Pediatr Orthop 1996; 16 (01) 122-126
  • 26 Palocaren T, Thabet AM, Rogers K. , et al. Anterior distal femoral stapling for correcting knee flexion contracture in children with arthrogryposis--preliminary results. J Pediatr Orthop 2010; 30 (02) 169-173
  • 27 Bowen JR, Morley DC, McInerny V, MacEwen GD. Treatment of genu recurvatum by proximal tibial closing-wedge/anterior displacement osteotomy. Clin Orthop Relat Res 1983; (179) 194-199
  • 28 Fielding JW, Liebler WA, Krishne Urs ND, Wilson SA, Puglisi AS. Tibial tubercle transfer: a long-range follow-up study. Clin Orthop Relat Res 1979; (144) 43-44
  • 29 Jeffreys TE. Genu recurvatum after Osgood-Schlatter's disease; report of a case. J Bone Joint Surg Br 1965; 47: 298-299
  • 30 Bjerkreim I, Benum P. Genu recurvatum: a late complication of tibial wire traction in fractures of the femur in children. Acta Orthop Scand 1975; 46 (06) 1012-1019
  • 31 Rainault JJ. Le recurvatum grave du genou poliomyélitique. Rev Chir Orthop Repar Appar Mot 1962; 48: 561-577
  • 32 Bonin N, Ait Si Selmi T, Dejour D, Neyret P. Knee para-articular flexion and extension osteotomies in adults [in German]. Orthopade 2004; 33 (02) 193-200
  • 33 Dejour D, Bonin N, Locatelli E. Tibial antirecurvatum osteotomies. Oper Tech Sports Med 2000; 8: 67-70
  • 34 Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 1994; 76 (05) 745-749
  • 35 Brazier J, Migaud H, Gougeon F, Cotten A, Fontaine C, Duquennoy A. Evaluation of methods for radiographic measurement of the tibial slope. A study of 83 healthy knees [in French]. Rev Chir Orthop Repar Appar Mot 1996; 82 (03) 195-200
  • 36 Feucht MJ, Mauro CS, Brucker PU, Imhoff AB, Hinterwimmer S. The role of the tibial slope in sustaining and treating anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 2013; 21 (01) 134-145
  • 37 Yoo JH, Chang CB, Shin KS, Seong SC, Kim TK. Anatomical references to assess the posterior tibial slope in total knee arthroplasty: a comparison of 5 anatomical axes. J Arthroplasty 2008; 23 (04) 586-592
  • 38 Hashemi J, Chandrashekar N, Mansouri H. , et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med 2010; 38 (01) 54-62
  • 39 Hudek R, Fuchs B, Regenfelder F, Koch PP. Is noncontact ACL injury associated with the posterior tibial and meniscal slope?. Clin Orthop Relat Res 2011; 469 (08) 2377-2384
  • 40 Slocum B, Devine T. Cranial tibial thrust: a primary force in the canine stifle. J Am Vet Med Assoc 1983; 183 (04) 456-459
  • 41 Slocum B, Devine T. Cranial tibial wedge osteotomy: a technique for eliminating cranial tibial thrust in cranial cruciate ligament repair. J Am Vet Med Assoc 1984; 184 (05) 564-569
  • 42 Lazar TP, Berry CR, deHaan JJ, Peck JN, Correa M. Long-term radiographic comparison of tibial plateau leveling osteotomy versus extracapsular stabilization for cranial cruciate ligament rupture in the dog. Vet Surg 2005; 34 (02) 133-141
  • 43 Moeller EM, Cross AR, Rapoff AJ. Change in tibial plateau angle after tibial plateau leveling osteotomy in dogs. Vet Surg 2006; 35 (05) 460-464
  • 44 Slocum B, Slocum TD. Tibial plateau leveling osteotomy for repair of cranial cruciate ligament rupture in the canine. Vet Clin North Am Small Anim Pract 1993; 23 (04) 777-795
  • 45 Agneskirchner JD, Hurschler C, Stukenborg-Colsman C, Imhoff AB, Lobenhoffer P. Effect of high tibial flexion osteotomy on cartilage pressure and joint kinematics: a biomechanical study in human cadaveric knees. Winner of the AGA-DonJoy Award 2004. Arch Orthop Trauma Surg 2004; 124 (09) 575-584
  • 46 Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD. Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 2004; 32 (02) 376-382
  • 47 Shelburne KB, Kim HJ, Sterett WI, Pandy MG. Effect of posterior tibial slope on knee biomechanics during functional activity. J Orthop Res 2011; 29 (02) 223-231
  • 48 Fening SD, Kovacic J, Kambic H, McLean S, Scott J, Miniaci A. The effects of modified posterior tibial slope on anterior cruciate ligament strain and knee kinematics: a human cadaveric study. J Knee Surg 2008; 21 (03) 205-211
  • 49 Martineau PA, Fening SD, Miniaci A. Anterior opening wedge high tibial osteotomy: the effect of increasing posterior tibial slope on ligament strain. Can J Surg 2010; 53 (04) 261-267
  • 50 Voos JE, Suero EM, Citak M. , et al. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc 2012; 20 (08) 1626-1631
  • 51 Butler DL, Noyes FR, Grood ES. Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 1980; 62 (02) 259-270
  • 52 Fleming BC, Beynnon BD, Nichols CE, Renström PA, Johnson RJ, Pope MH. An in vivo comparison between intraoperative isometric measurement and local elongation of the graft after reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 1994; 76 (04) 511-519
  • 53 McLean SG, Oh YK, Palmer ML. , et al. The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. J Bone Joint Surg Am 2011; 93 (14) 1310-1317
  • 54 Nelitz M, Seitz AM, Bauer J, Reichel H, Ignatius A, Dürselen L. Increasing posterior tibial slope does not raise anterior cruciate ligament strain but decreases tibial rotation ability. Clin Biomech (Bristol, Avon) 2013; 28 (03) 285-290
  • 55 Petrigliano FA, Suero EM, Voos JE, Pearle AD, Allen AA. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee. Am J Sports Med 2012; 40 (06) 1322-1328
  • 56 Giffin JR, Stabile KJ, Zantop T, Vogrin TM, Woo SL, Harner CD. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee. Am J Sports Med 2007; 35 (09) 1443-1449
  • 57 Dejour D, Kuhn A, Dejour H. Tibial deflexion osteotomy and chronic anterior laxity: a series of 22 cases. Rev Chir Orthop Repar Appar Mot 1998; 84 (02) 28-29
  • 58 Sonnery-Cottet B, Mogos S, Thaunat M. , et al. Proximal tibial anterior closing wedge osteotomy in repeat revision of anterior cruciate ligament reconstruction. Am J Sports Med 2014; 42 (08) 1873-1880
  • 59 Dejour D, Saffarini M, Demey G, Baverel L. Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture. Knee Surg Sports Traumatol Arthrosc 2015; 23 (10) 2846-2852
  • 60 Lecuire F, Lerat JL, Bousquet G, Dejour H, Trillat A. The treatment of genu recurvatum (author's transl) [in French]. Rev Chir Orthop Repar Appar Mot 1980; 66 (02) 95-103
  • 61 Moroni A, Pezzuto V, Pompili M, Zinghi G. Proximal osteotomy of the tibia for the treatment of genu recurvatum in adults. J Bone Joint Surg Am 1992; 74 (04) 577-586
  • 62 van Raaij TM, de Waal Malefijt J. Anterior opening wedge osteotomy of the proximal tibia for anterior knee pain in idiopathic hyperextension knees. Int Orthop 2006; 30 (04) 248-252
  • 63 Kim TW, Lee S, Yoon JR, Han HS, Lee MC. Proximal tibial anterior open-wedge oblique osteotomy: A novel technique to correct genu recurvatum. Knee 2017; 24 (02) 345-353
  • 64 Irwin C. Genu recurvatum following poliomyelitis: a controlled method of operative correction. JAMA 1942; 120: 277-280
  • 65 Dejour H, Walch G, Neyret P, Adeleine P. Results of surgically treated chronic anterior laxities. Apropos of 251 cases reviewed with a minimum follow-up of 3 years [in French]. Rev Chir Orthop Repar Appar Mot 1988; 74 (07) 622-636