Synlett 2018; 29(07): 856-862
DOI: 10.1055/s-0036-1591938
synpacts
© Georg Thieme Verlag Stuttgart · New York

Biomimetic Approaches: Synthesis of (±)-Homodimericin A

Donghui Ma
University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA   Email: zwang9@albany.edu
,
University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA   Email: zwang9@albany.edu
› Author Affiliations
Start-up funds from SUNY-Albany are greatly acknowledged.
Further Information

Publication History

Received: 19 December 2017

Accepted after revision: 25 January 2018

Publication Date:
19 February 2018 (online)


In memory of Professors Gilbert Stork and Ronald Breslow

Abstract

A brief history of biomimetic total synthesis is reviewed. The molecules covered in this SynPact account include tropinone (Robinson, 1917), usnic acid (Barton, 1956), progesterone (Johnson, 1971), endiandric acids (Nicolaou, 1982), methyl homosecodaphniphyllate (Heathcock, 1988), glabrescol (Corey, 2000), FR182877 (Sorensen, 2002 and Evans, 2002), and intricarene (Pattenden, 2006 and Trauner, 2006). Key biomimetic transformations of the syntheses are highlighted. Our recent biomimetic synthesis of homodimericin A is also discussed. Our study validates the key steps of the biosynthesis proposed by Clardy et al.

 
  • References

  • 1 Robinson R. J. Chem. Soc., Trans. 1917; 111: 762
    • 2a Robinson R. J. Chem. Soc., Trans. 1917; 111: 876
    • 2b Leete E. Kim SH. J. Am. Chem. Soc. 1988; 110: 2976
    • 2c Leete E. Bjorklund JA. Couladis MM. Kim SH. J. Am. Chem. Soc. 1991; 113: 9286
  • 3 Biomimetic Organic Synthesis . Vol. 2. Poupon E. Nay B. Wiley-VCH; Weinheim: 2011
    • 4a Stork G. Terrell R. Szmuszkovicz J. J. Am. Chem. Soc. 1954; 76: 2029
    • 4b Stork G. Landesman HK. J. Am. Chem. Soc. 1956; 78: 5128
    • 4c Stork G. Landesman HK. J. Am. Chem. Soc. 1956; 78: 5129
    • 4d Stork G. Brizzolara A. Landesman H. Szmuszkovicz J. Terrell R. J. Am. Chem. Soc. 1963; 85: 207
  • 5 See ref. 17 of this paper: Seeman JI. Angew. Chem. Int. Ed. 2012; 51: 3012
  • 7 Barton DH. R. Deflorin AM. Edwards OE. J. Chem. Soc. 1956; 530
    • 8a Yoder RA. Johnston JN. Chem. Rev. 2005; 105: 4730
    • 8b Stork G. Burgstahler AW. J. Am. Chem. Soc. 1955; 77: 5068
    • 8c Eschenmoser A. Ruzicka L. Jeger O. Arigoni D. Helv. Chim. Acta 1955; 38: 1890
  • 9 Johnson WS. Gravestock MB. McCarry BE. J. Am. Chem. Soc. 1971; 93: 4332
    • 10a Woodward RB. Hoffmann R. J. Am. Chem. Soc. 1965; 87: 395
    • 10b Hoffmann R. Woodward RB. J. Am. Chem. Soc. 1965; 87: 2046
    • 10c Hoffmann R. Woodward RB. J. Am. Chem. Soc. 1965; 87: 4388
    • 10d Woodward RB. Hoffmann R. Angew. Chem. Int. Ed. Engl. 1969; 8: 781
  • 11 Beaudry CM. Malerich JP. Trauner D. Chem. Rev. 2005; 105: 4757
    • 12a Bandaranayake WM. Banfield JE. Black DSt. C. Fallon GD. Gatehouse BM. J. Chem. Soc., Chem. Commun. 1980; 162
    • 12b Bandaranayake WM. Banfield JE. Black DSt. C. J. Chem. Soc., Chem. Commun. 1980; 902
    • 12c Bandaranayake WM. Banfield JE. Black DSt. C. Fallon GD. Gatehouse BM. Aust. J. Chem. 1981; 34: 1655
    • 12d Bandaranayake WM. Banfield JE. Black DSt. C. Aust. J. Chem. 1982; 35: 557
    • 12e Bandaranayake WM. Banfield JE. Black DSt. C. Fallon GD. Gatehouse BM. Aust. J. Chem. 1982; 35: 567
    • 12f Banfield JE. Black DSt. C. Johns SR. Willing R. 1982; 35: 2247
    • 13a Nicolaou KC. Petasis NA. Zipkin RE. Uenishi J. J. Am. Chem. Soc. 1982; 104: 5555
    • 13b Nicolaou KC. Petasis NA. Uenishi J. Zipkin RE. J. Am. Chem. Soc. 1982; 104: 5557
    • 13c Nicolaou KC. Petasis NA. Zipkin RE. J. Am. Chem. Soc. 1982; 104: 5558
    • 13d Nicolaou KC. Petasis NA. Zipkin RE. J. Am. Chem. Soc. 1982; 104: 5560
  • 14 Kobayashi JI. Kubota T. Nat. Prod. Rep. 2009; 26: 936
    • 15a Ruggeri RB. Hansen MM. Heathcock CH. J. Am. Chem. Soc. 1988; 110: 8734
    • 15b Stafford JA. Heathcock CH. J. Org. Chem. 1990; 55: 5433
    • 15c Heathcock CH. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 14323
    • 15d Heathcock CH. Hansen MM. Ruggeri RB. Kath JC. J. Org. Chem. 1992; 57: 2544
    • 15e Heathcock CH. Stafford JA. J. Org. Chem. 1992; 57: 2566
    • 15f Heathcock CH. Angew. Chem. Int. Ed. Engl. 1992; 31: 665
  • 16 For total synthesis of methyl homosecodaphniphyllate using methylamine instead of ammonia, see: ref 15c and 15d.
  • 17 Tantillo DJ. Org. Lett. 2016; 18: 4482
    • 18a Xiong Z. Corey EJ. J. Am. Chem. Soc. 2000; 122: 4831
    • 18b Xiong Z. Corey EJ. J. Am. Chem. Soc. 2000; 122: 9328
    • 19a Vosburg DA. Vanderwal CD. Sorensen EJ. J. Am. Chem. Soc. 2002; 124: 4552
    • 19b Vanderwal CD. Vosburg DA. Weiler S. Sorensen EJ. J. Am. Chem. Soc. 2003; 125: 5393
    • 19c Evans DA. Starr JT. Angew. Chem. Int. Ed. 2002; 41: 1787
    • 19d Evans DA. Starr JT. J. Am. Chem. Soc. 2003; 125: 13531
    • 20a Tang B. Bray CD. Pattenden G. Tetrahedron Lett. 2006; 47: 6401
    • 20b Tang B. Bray CD. Pattenden G. Org. Biomol. Chem. 2009; 7: 4448
    • 20c Roethle PA. Hernandez PT. Trauner D. Org. Lett. 2006; 8: 5901
  • 21 Mevers E. Saurí J. Liu Y. Moser A. Ramadhar TR. Varlan M. Williamson RT. Martin GE. Clardy J. J. Am. Chem. Soc. 2016; 138: 12324
  • 22 Ma D. Liu Y. Wang Z. Angew. Chem. Int. Ed. 2017; 56: 7886
  • 23 For a view on the non-aqueous nature of reaction media in some enzymatic reactions, see: Dewar MJ. Storch DM. Proc. Natl. Acad. Sci. U. S. A. 1985; 82: 2225
  • 24 Long X. Huang Y. Long Y. Deng J. Org. Chem. Front. 2018; Advance Article. DOI: 10.1039/C7QO01161J.
  • 25 Huang J. Gu Y. Guo K. Zhu L. Lan Y. Gong J. Yang Z. Angew. Chem. Int. Ed. 2017; 56: 7890
  • 26 Feng J. Lei X. Guo Z. Tang Y. Angew. Chem. Int. Ed. 2017; 56: 7895