Synlett 2018; 29(07): 863-873
DOI: 10.1055/s-0036-1591935
account
© Georg Thieme Verlag Stuttgart · New York

Total Synthesis of Natural Terpenoids: Inspired but Not Limited by Biohypothesis

Juan Chen
a   Analytical & Testing Center, Sichuan University, Chengdu 610064, China
,
Bo Liu  *
b   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China   Email: chembliu@scu.edu.cn
› Author Affiliations
The related synthetic work is financially support by the NSFC (21290180, 21322205, 21321061 and 21672153).
Further Information

Publication History

Received: 14 December 2017

Accepted after revision: 16 January 2018

Publication Date:
21 March 2018 (online)


Abstract

This account describes our studies on the total synthesis of several natural terpenoids based on our modified biosynthetic hypothesis. Compared to the originally proposed biosynthetic hypothesis, the modified ones proved to be more practicable for the formation of hispidanin A, a dimeric diterpenoid, and sarcandrolide J and shizukaol D, two dimeric sesquiterpenoids, from a viewpoint of chemical reactivity. Moreover, a cascade reaction involving intermolecular and intramolecular cycloaddition was facilitated to expeditiously accumulate molecular complexity in the total synthesis of bolivianine, a sesterterpenoid, on the basis of a modified biohypothesis.

1 Introduction

2 Total Synthesis of Hispidanin A

3 Total Syntheses of Bolivianine and Isobolivianine

4 Total Syntheses of Sarcandrolide J and Shizukaol D

5 Conclusion

 
  • References


    • For recent review articles, see:
    • 1a Hugelshofer C. Magauer T. Org. Biomol. Chem. 2017; 15: 12
    • 1b Zhu G. Wadavrao SB. Liu B. Chem. Rec. 2017; 17: 584
    • 1c Brill ZG. Condakes ML. Ting CP. Maimone TJ. Chem. Rev. 2017; 117: 11753
    • 1d Qiao T. Liang G. Sci. China Chem. 2016; 59: 1142
    • 1e Urabe D. Asaba T. Inoue M. Chem. Rev. 2015; 115: 9207
  • 2 Walsh CT. Tang Y. Natural Product Biosynthesis: Chemical Logic and Enzymatic Machinery . RSC Publishing; Croydon: 2017. 195
  • 4 Huang B. Xiao C.-J. Huang Z.-Y. Tian X.-Y. Cheng X. Dong X. Jiang B. Org. Lett. 2014; 16: 3552
  • 5 Deng H. Cao W. Zhang Z. Liu B. Org. Biomol. Chem. 2016; 14: 6225
    • 6a Ulubelen A. Topcu G. Chen S. Cai P. Snyder JK. J.Org. Chem. 1991; 56: 7354
    • 6b Ulubelen A. Topcu G. Tan N. Phytochemistry 1995; 40: 1473
  • 7 Wang X.-N. Bashyal BP. Wijeratne EM. K. U’Ren JM. Liu MX. Gunatilaka MK. Arnold AE. Gunatilaka AA. L. J. Nat. Prod. 2011; 74: 2052
  • 8 Zhou J. Pan L. Li Q. Pu J. Yao P. Zhu M. Banas JA. Zhang H. Sun H. Org. Biomol. Chem. 2012; 10: 5039
  • 9 Streuff J. Gansauer A. Angew. Chem. Int. Ed. 2015; 54: 14232
  • 10 Miyabe H. Kawashima A. Yoshioka E. Kohtani S. Chem. Eur. J. 2017; 23: 6225
  • 11 Gordon HL. Freeman S. Hudlicky T. Synlett 2005; 2911
    • 12a Deng HH. Cao W. Liu R. Zhang Y. Liu B. Angew. Chem. Int. Ed. 2017; 56: 5849
    • 12b Nishikado H. Nakatsuji H. Ueno K. Nagase R. Tanabe Y. Synlett 2010; 2087
  • 13 Li F. Tu Q. Chen S. Zhu L. Lan Y. Gong J. Yang Z. Angew. Chem. Int. Ed. 2017; 56: 5844
  • 14 Acebey L. Sauvain M. Beck S. Moulis C. Gimenez A. Jullian V. Org. Lett. 2007; 9: 4693
  • 15 Lorenzo D. Loayza I. Dellacassa E. Flavour Fragr. J. 2003; 18: 32
    • 16a Acebey L. Jullian V. Sereno D. Chevalley S. Estevez Y. Moulis C. Beck S. Valentin A. Gimenez A. Sauvain M. Planta Med. 2010; 76: 365
    • 16b Trentin AP. Santos AR. S. Guedes A. Pizzolatti MG. Yunes RA. Calixto JB. Planta Med. 1999; 65: 517
    • 16c Bohlmann F. Zdero C. King RM. Robinson H. Phytochemistry 1980; 19: 689
    • 17a Yue G. Yang L. Yuan C. Jiang X. Liu B. Org. Lett. 2011; 13: 5406
    • 17b Yue G. Yang L. Yuan C. Du B. Liu B. Tetrahedron 2012; 68: 9624
    • 17c Yue G. Yang L. Yuan C. Du B. Liu B. Chin. J. Org. Chem. 2013; 33: 90
    • 19a Yuan C. Du B. Yang L. Liu B. J. Am. Chem. Soc. 2013; 135: 9291
    • 19b Yang Y. Li J. Du B. Yuan C. Liu B. Qin S. Chem. Commun. 2015; 51: 6179
    • 19c Du B. Yuan C. Yu T. Yang L. Yang Y. Liu B. Qin S. Chem. Eur. J. 2014; 20: 2613
  • 20 Unpublished results.
  • 21 Li J.-P. Yuan C.-C. Du B. Liu B. Chin. Chem. Lett. 2017; 28: 113
  • 22 Liu B. Yuan C. Du B. In Strategies and Tactics in Organic Synthesis . Vol. 13. Harmata M. Elsevier; Kidlington: 2017: 161
  • 23 Kawabata J. Fukushi Y. Tahara S. Mizutani J. Phytochemistry 1990; 29: 2332

    • For review articles see:
    • 24a Cao C.-M. Peng Y. Shi Q.-W. Xiao P.-G. Chem. Biodiversity 2008; 5: 219
    • 24b Xu Y.-J. Chem. Biodiversity 2013; 10: 1754
    • 24c Wang A.-R. Song H.-C. An H.-M. Huang Q. Luo X. Dong J.-Y. Chem. Biodiversity 2015; 12: 451
    • 24d Fan Y.-Y. Gao X.-H. Yue J.-M. Sci. China Chem. 2016; 59: 1126
  • 25 Kwon OE. Lee HS. Lee SW. Bae K. Kim K. Hayashi M. Rho M.-C. Kim Y.-K. J. Ethnopharmacol. 2006; 104: 270
  • 26 Zhou B. Wu Y. Dalal S. Merino EF. Liu Q.-F. Xu C.-H. Yuan T. Ding J. Kingston DG. I. Cassera MB. Yue J.-M. J. Nat. Prod. 2017; 80: 96
  • 28 Uchida M. Kusano G. Kondo Y. Nozoe S. Heterocycles 1978; 9: 139
    • 29a Takeda K. Ishii H. Tozyo T. Minato H. J. Chem. Soc. C: Organic 1969; 1920
    • 29b Takeda K. Ikuta M. Miyawaki M. Tetrahedron 1964; 20: 2991
    • 29c Ishii H. Tozyo T. Nakamura M. Takeda K. Tetrahedron 1968; 24: 625
  • 30 Yang S.-P. Gao Z.-B. Wang F.-D. Liao S.-G. Chen H.-D. Zhang C.-R. Hu G.-Y. Yue J.-M. Org. Lett. 2007; 9: 903
  • 31 Kawabata J. Mizutani J. Phytochemistry 1992; 31: 1293
    • 32a Hu R. Yan H. Hao X. Liu H. Wu J. PLoS ONE 2013; 8: e73527
    • 32b Tang L. Zhu H. Yang X. Xie F. Peng J. Jiang D. Xie J. Qi M. Yu L. PLoS ONE 2015; 11: e0152012
  • 33 Ni G. Zhang H. Liu H.-C. Yang S.-P. Geng M.-Y. Yue J.-M. Tetrahedron 2013; 69: 564
  • 34 Yuan C. Du B. Deng H. Man Y. Liu B. Angew. Chem. Int. Ed. 2017; 56: 637