Synlett 2018; 29(10): 1272-1280
DOI: 10.1055/s-0036-1591870
synpacts
© Georg Thieme Verlag Stuttgart · New York

Weinreb β-Ketoamides in Enantioselective Organocatalysis: A Balance between Reactivity and Selectivity

Haiying Du
Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France   Email: xavier.bugaut@univ-amu.fr
,
Yohan Dudognon
Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France   Email: xavier.bugaut@univ-amu.fr
,
Jean Rodriguez
Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France   Email: xavier.bugaut@univ-amu.fr
,
Thierry Constantieux
Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France   Email: xavier.bugaut@univ-amu.fr
,
Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France   Email: xavier.bugaut@univ-amu.fr
› Author Affiliations
Financial support from Aix Marseille Université, Centrale Marseille, and the CNRS, along with scholarships from the China Scholarship Council (H.Y.D.) and the Ministère de l’Enseignement Supérieur et de la Recherche (Y.D.) are acknowledged.
Further Information

Publication History

Received: 03 November 2017

Accepted after revision: 20 November 2017

Publication Date:
03 January 2018 (online)


Published as part of the Special Section 9th EuCheMS Organic Division Young Investigator Workshop

Abstract

β-Dicarbonyl compounds have established themselves as substrates of choice in enantioselective organocatalysis because of their easy activation. Among them, β-diketones, β-diesters, and β-ketoesters lead the dance and there has been only limited work with other β-dicarbonyl compounds as pronucleophiles. In this Synpacts article, we wish to discuss our recent contributions to the introduction of Weinreb β-ketoamides in organocatalyzed transformations, where they can provide an interesting balance between reactivity and selectivity, with also interesting potentialities in terms of postfunctionalization.

1 Introduction

2 Preparation of Weinreb β-Ketoamides

3 Michael Addition to Nitroolefins

4 Multicomponent Synthesis of Tetrahydropyridines

5 Outlook

 
  • References and Notes

    • 1a von Liebig J. Justus Liebigs Ann. Chem. 1860; 113: 246
    • 1b Langenbeck W. Justus Liebigs Ann. Chem. 1929; 469: 16

      Selected examples:
    • 2a Bredig G. Fiske PS. Biochem. Z. 1912; 46: 7
    • 2b Pracejus H. Justus Liebigs Ann. Chem. 1960; 634: 9
    • 2c Eder U. Sauer G. Wiechert R. Angew. Chem., Int. Ed. Engl. 1971; 10: 496
    • 2d Sheehan JC. Hara T. J. Org. Chem. 1974; 39: 1196
    • 2e Hajos ZG. Parrish DR. J. Org. Chem. 1974; 39: 1615
    • 2f Tu Y. Wang Z.-X. Shi Y. J. Am. Chem. Soc. 1996; 118: 9806
    • 3a Sigman MS. Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
    • 3b Ahrendt KA. Borths CJ. MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
    • 3c List B. J. Am. Chem. Soc. 2000; 122: 9336
    • 4a Asymmetric Organocatalysis . In Science of Synthesis . List B. Maruoka K. Thieme; Stuttgart: 2012
    • 4b Comprehensive Enantioselective Organocatalysis. Dalko P. Wiley-VCH; Weinheim: 2013
    • 5a Bonne D. Constantieux T. Coquerel Y. Rodriguez J. Chem. Eur. J. 2013; 19: 2218
    • 5b Govender T. Arvidsson PI. Maguire GE. M. Kruger HG. Naicker T. Chem. Rev. 2016; 116: 9375
    • 6a Olmstead WN. Bordwell FG. J. Org. Chem. 1980; 45: 3299
    • 6b Bordwell FG. Harrelson JA. Jr. Can. J. Chem. 1990; 68: 1714
    • 6c Arnett EM. Maroldo SG. Schilling SL. Harrelson JA. J. Am. Chem. Soc. 1984; 106: 6759
  • 7 Bordwell FG. Fried HE. J. Org. Chem. 1991; 56: 4218
  • 8 Corral-Bautista F. Appel R. Frickel JS. Mayr H. Chem. Eur. J. 2015; 21: 875

    • For selected examples, see:
    • 9a Elsner P. Jiang H. Nielsen JB. Pasi F. Jorgensen KA. Chem. Commun. 2008; 5827
    • 9b Pan Y. Zhao Y. Ma T. Yang Y. Liu H. Jiang Z. Tan C.-H. Chem. Eur. J. 2010; 16: 779
    • 9c Sanchez Duque MM. Baslé O. Isambert N. Gaudel-Siri A. Génisson Y. Plaquevent J.-C. Rodriguez J. Constantieux T. Org. Lett. 2011; 13: 3296
    • 9d Mailhol D. Sanchez Duque MD. M. Raimondi W. Bonne D. Constantieux T. Coquerel Y. Rodriguez J. Adv. Synth. Catal. 2012; 354: 3523
    • 9e De Fusco C. Meninno S. Tedesco C. Lattanzi A. Org. Biomol. Chem. 2013; 11: 896
    • 9f Mailhol D. Castillo J.-C. Mohanan K. Abonia R. Coquerel Y. Rodriguez J. ChemCatChem 2013; 5: 1192
    • 9g Sanchez Duque MM. Baslé O. Génisson Y. Plaquevent J.-C. Bugaut X. Constantieux T. Rodriguez J. Angew. Chem. Int. Ed. 2013; 52: 14143
    • 9h Goudedranche S. Bugaut X. Constantieux T. Bonne D. Rodriguez J. Chem. Eur. J. 2014; 20: 410
    • 9i Zhu Y. Zhang L. Luo S. J. Am. Chem. Soc. 2014; 136: 14642
    • 9j Quintard A. Cheshmedzhieva D. Sanchez Duque MM. Gaudel-Siri A. Naubron J.-V. Génisson Y. Plaquevent J.-C. Bugaut X. Rodriguez J. Constantieux T. Chem. Eur. J. 2015; 21: 778

      For selected examples, see:
    • 10a Bertelsen S. Johansen RL. Jorgensen KA. Chem. Commun. 2008; 3016
    • 10b Hatano M. Horibe T. Ishihara K. J. Am. Chem. Soc. 2009; 132: 56
    • 10c Zhang W. Franzén J. Adv. Synth. Catal. 2010; 352: 499
    • 10d Wu X. Liu Q. Fang H. Chen J. Cao W. Zhao G. Chem. Eur. J. 2012; 18: 12196
    • 10e Huang Y.-M. Zheng C.-W. Zhao G. J. Org. Chem. 2015; 80: 3798
    • 12a Hiyamizu H. Ooi H. Inomoto Y. Esumi T. Iwabuchi Y. Hatakeyama S. Org. Lett. 2001; 3: 473
    • 12b Li W. Ma X. Fan W. Tao X. Li X. Xie X. Zhang Z. Org. Lett. 2011; 13: 3876
    • 12c Roßbach J. Baumeister J. Harms K. Koert U. Eur. J. Org. Chem. 2013; 662
    • 12d Wang Q. van Gemmeren M. List B. Angew. Chem. Int. Ed. 2014; 53: 13592
    • 13a Chen Y. Sieburth SM. N. Synthesis 2002; 2191
    • 13b Kulesza A. Ebetino FH. Mazur AW. Tetrahedron Lett. 2003; 44: 5511
    • 13c Matsunaga S. Kinoshita T. Okada S. Harada S. Shibasaki M. J. Am. Chem. Soc. 2004; 126: 7559
    • 13d Diehl J. Brückner R. Eur. J. Org. Chem. 2017; 278
  • 14 Nugent J. Schwartz BD. Org. Lett. 2016; 18: 3834
    • 15a Presset M. Coquerel Y. Rodriguez J. J. Org. Chem. 2009; 74: 415
    • 15b Dudognon Y. Presset M. Rodriguez J. Coquerel Y. Bugaut X. Constantieux T. Chem. Commun. 2016; 52: 3010
  • 16 The free N,O-dimethylhydroxylamine was obtained by mixing its commercially available hydrochloride with an equimolar amount of triethylamine in toluene overnight, followed by filtration to remove triethylammonium chloride.
  • 17 Du H. Rodriguez J. Bugaut X. Constantieux T. Chem. Eur. J. 2014; 20: 8458
  • 18 Alonso D. Baeza A. Chinchilla R. Gómez C. Guillena G. Pastor I. Ramón D. Molecules 2017; 22: 895
  • 19 Okino T. Hoashi Y. Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
  • 20 Okino T. Hoashi Y. Furukawa T. Xu X. Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
  • 21 Hamza A. Schubert G. Soós T. Pápai I. J. Am. Chem. Soc. 2006; 128: 13151
    • 22a Malerich JP. Hagihara K. Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
    • 22b Jiang X. Zhang Y. Liu X. Zhang G. Lai L. Wu L. Zhang J. Wang R. J. Org. Chem. 2009; 74: 5562
    • 22c Almaşi D. Alonso DA. Gómez-Bengoa E. Nájera C. J. Org. Chem. 2009; 74: 6163
    • 22d Manzano R. Andrés JM. Pedrosa R. Synlett 2011; 2203
  • 23 Liu B. Han X. Dong Z. Lv H. Zhou H.-B. Dong C. Tetrahedron: Asymmetry 2013; 24: 1276
    • 24a Vakulya B. Varga S. Csámpai A. Soós T. Org. Lett. 2005; 7: 1967
    • 24b McCooey SH. Connon SJ. Angew. Chem. Int. Ed. 2005; 44: 6367
  • 25 Chauhan P. Mahajan S. Kaya U. Hack D. Enders D. Adv. Synth. Catal. 2015; 357: 253
  • 26 For a previous unsuccessful attempt to react a Weinreb β-ketoamide with an aliphatic nitroolefin in the presence of a bifunctional thiourea catalyst, see ref. 10a.
    • 27a Taft RW. J. Am. Chem. Soc. 1953; 75: 4538
    • 27b Charton M. J. Am. Chem. Soc. 1975; 97: 1552
    • 27c Charton M. J. Org. Chem. 1976; 41: 2217
    • 27d Harper KC. Sigman MS. J. Org. Chem. 2013; 78: 2813
    • 28a Horitsugi N. Kojima K. Yasui K. Sohtome Y. Nagasawa K. Asian J. Org. Chem. 2014; 3: 445

    • For a related study with other tertiary β-ketoamides in the presence of a bifunctional supported iminophosphorane-thiourea catalyst, see:
    • 28b Goldys AM. Núñez MG. Dixon DJ. Org. Lett. 2014; 16: 6294
  • 29 Fujii H. Oshima K. Utimoto K. Tetrahedron Lett. 1991; 32: 6147
  • 30 Evans DA. Chapman KT. Tetrahedron Lett. 1986; 27: 5939

    • For unsuccessful attempts in the presence of proline, see:
    • 31a Vesely J. Rios R. Córdova A. Tetrahedron Lett. 2008; 49: 1137

    • For a recent highly efficient and selective variant, see:
    • 31b Frias M. Mas-Ballesté R. Arias S. Alvarado C. Alemán J. J. Am. Chem. Soc. 2017; 139: 672

      For selected reviews, see:
    • 32a Touré BB. Hall DG. Chem. Rev. 2009; 109: 4439
    • 32b Ruijter E. Scheffelaar R. Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
    • 32c Climent MJ. Corma A. Iborra S. RSC Adv. 2012; 2: 16
    • 32d Dömling A. Wang W. Wang K. Chem. Rev. 2012; 112: 3083
    • 32e Brauch S. van Berkel SS. Westermann B. Chem. Soc. Rev. 2013; 42: 4948
    • 32f Cioc RC. Ruijter E. Orru RV. A. Green Chem. 2014; 16: 2958
    • 32g Zhu J. Wang Q. Wang M.-X. Multicomponent Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2014
    • 33a Jiang B. Rajale T. Wever W. Tu S.-J. Li G. Chem. Asian J. 2010; 5: 2318
    • 33b Bugaut X. Bonne D. Coquerel Y. Rodriguez J. Constantieux T. Curr. Org. Chem. 2013; 17: 1920
  • 34 Bugaut X. Constantieux T. Coquerel Y. Rodriguez J. 1,3-Dicarbonyls in Multicomponent Reactions . In Multicomponent Reactions in Organic Synthesis . Zhu J. Wang Q. Wang M.-X. Wiley-VCH; Weinheim: 2014: 109
    • 35a Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
    • 35b de Graaff C. Ruijter E. Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
    • 35c Marson CM. Chem. Soc. Rev. 2012; 41: 7712
    • 35d Volla CM. R. Atodiresei I. Rueping M. Chem. Rev. 2014; 114: 2390

      For selected examples, see:
    • 36a Wu X. Dai X. Nie L. Fang H. Chen J. Ren Z. Cao W. Zhao G. Chem. Commun. 2010; 46: 2733
    • 36b Rueping M. Volla CM. R. Bolte M. Raabe G. Adv. Synth. Catal. 2011; 353: 2853
    • 36c Du H. Rodriguez J. Bugaut X. Constantieux T. Adv. Synth. Catal. 2014; 356: 851

    • For selected other related strategies for the synthesis of 1,4,5,6,-tetrahydripyridines, see:
    • 36d Rueping M. Antonchick AP. Angew. Chem. Int. Ed. 2008; 47: 5836
    • 36e Hong B.-C. Liao W.-K. Dange NS. Liao J.-H. Org. Lett. 2013; 15: 468
    • 36f Blümel M. Chauhan P. Hahn R. Raabe G. Enders D. Org. Lett. 2014; 16: 6012
    • 36g Rong C. Pan H. Liu M. Tian H. Shi Y. Chem. Eur. J. 2016; 22: 2887

      For other organocatalyzed synthetic routes towards 1,2,3,4-tetrahydropyridines, see:
    • 37a Han R.-G. Wang Y. Li Y.-Y. Xu P.-F. Adv. Synth. Catal. 2008; 350: 1474
    • 37b Veverková E. Liptáková L. Veverka M. Šebesta R. Tetrahedron: Asymmetry 2013; 24: 548
    • 37c Tan Y. Chen Y.-J. Lin H. Luan H.-L. Sun X.-W. Yang X.-D. Lin G.-Q. Chem. Commun. 2014; 50: 15913
    • 38a Marigo M. Wabnitz TC. Fielenbach D. Jørgensen KA. Angew. Chem. Int. Ed. 2005; 44: 794
    • 38b Hayashi Y. Gotoh H. Hayashi T. Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 38c Jensen KL. Dickmeiss G. Jiang H. Albrecht Ł. Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 38d Meninno S. Lattanzi A. Chem. Commun. 2013; 49: 3821
  • 39 Relative configuration was attributed thanks to 2D NMR studies and absolute configuration in accordance with literature precedents. See ref. 39 for further details.
    • 40a Dudognon Y. Du H. Rodriguez J. Bugaut X. Constantieux T. Chem. Commun. 2015; 51: 1980
    • 40b Du H. Dudognon Y. Sanchez Duque M. dM. Goudedranche S. Bonne D. Rodriguez J. Bugaut X. Constantieux T. Synthesis 2016; 48: 3479
  • 41 Jurberg ID. Peng B. Wöstefeld E. Wasserloos M. Maulide N. Angew. Chem. Int. Ed. 2012; 51: 1950
  • 42 Kouznetsov VV. Tetrahedron 2009; 65: 2721