RSS-Feed abonnieren
DOI: 10.1055/s-0036-1591870
Weinreb β-Ketoamides in Enantioselective Organocatalysis: A Balance between Reactivity and Selectivity
Publikationsverlauf
Received: 03. November 2017
Accepted after revision: 20. November 2017
Publikationsdatum:
03. Januar 2018 (online)


Published as part of the Special Section 9th EuCheMS Organic Division Young Investigator Workshop
Abstract
β-Dicarbonyl compounds have established themselves as substrates of choice in enantioselective organocatalysis because of their easy activation. Among them, β-diketones, β-diesters, and β-ketoesters lead the dance and there has been only limited work with other β-dicarbonyl compounds as pronucleophiles. In this Synpacts article, we wish to discuss our recent contributions to the introduction of Weinreb β-ketoamides in organocatalyzed transformations, where they can provide an interesting balance between reactivity and selectivity, with also interesting potentialities in terms of postfunctionalization.
1 Introduction
2 Preparation of Weinreb β-Ketoamides
3 Michael Addition to Nitroolefins
4 Multicomponent Synthesis of Tetrahydropyridines
5 Outlook
-
References and Notes
- 1a von Liebig J. Justus Liebigs Ann. Chem. 1860; 113: 246
- 1b Langenbeck W. Justus Liebigs Ann. Chem. 1929; 469: 16
- 2a Bredig G. Fiske PS. Biochem. Z. 1912; 46: 7
- 2b Pracejus H. Justus Liebigs Ann. Chem. 1960; 634: 9
- 2c Eder U. Sauer G. Wiechert R. Angew. Chem., Int. Ed. Engl. 1971; 10: 496
- 2d Sheehan JC. Hara T. J. Org. Chem. 1974; 39: 1196
- 2e Hajos ZG. Parrish DR. J. Org. Chem. 1974; 39: 1615
- 2f Tu Y. Wang Z.-X. Shi Y. J. Am. Chem. Soc. 1996; 118: 9806
- 3a Sigman MS. Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
- 3b Ahrendt KA. Borths CJ. MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
- 3c List B. J. Am. Chem. Soc. 2000; 122: 9336
- 4a Asymmetric Organocatalysis . In Science of Synthesis . List B. Maruoka K. Thieme; Stuttgart: 2012
- 4b Comprehensive Enantioselective Organocatalysis. Dalko P. Wiley-VCH; Weinheim: 2013
- 5a Bonne D. Constantieux T. Coquerel Y. Rodriguez J. Chem. Eur. J. 2013; 19: 2218
- 5b Govender T. Arvidsson PI. Maguire GE. M. Kruger HG. Naicker T. Chem. Rev. 2016; 116: 9375
- 6a Olmstead WN. Bordwell FG. J. Org. Chem. 1980; 45: 3299
- 6b Bordwell FG. Harrelson JA. Jr. Can. J. Chem. 1990; 68: 1714
- 6c Arnett EM. Maroldo SG. Schilling SL. Harrelson JA. J. Am. Chem. Soc. 1984; 106: 6759
- 7 Bordwell FG. Fried HE. J. Org. Chem. 1991; 56: 4218
- 8 Corral-Bautista F. Appel R. Frickel JS. Mayr H. Chem. Eur. J. 2015; 21: 875
- 9a Elsner P. Jiang H. Nielsen JB. Pasi F. Jorgensen KA. Chem. Commun. 2008; 5827
- 9b Pan Y. Zhao Y. Ma T. Yang Y. Liu H. Jiang Z. Tan C.-H. Chem. Eur. J. 2010; 16: 779
- 9c Sanchez Duque MM. Baslé O. Isambert N. Gaudel-Siri A. Génisson Y. Plaquevent J.-C. Rodriguez J. Constantieux T. Org. Lett. 2011; 13: 3296
- 9d Mailhol D. Sanchez Duque MD. M. Raimondi W. Bonne D. Constantieux T. Coquerel Y. Rodriguez J. Adv. Synth. Catal. 2012; 354: 3523
- 9e De Fusco C. Meninno S. Tedesco C. Lattanzi A. Org. Biomol. Chem. 2013; 11: 896
- 9f Mailhol D. Castillo J.-C. Mohanan K. Abonia R. Coquerel Y. Rodriguez J. ChemCatChem 2013; 5: 1192
- 9g Sanchez Duque MM. Baslé O. Génisson Y. Plaquevent J.-C. Bugaut X. Constantieux T. Rodriguez J. Angew. Chem. Int. Ed. 2013; 52: 14143
- 9h Goudedranche S. Bugaut X. Constantieux T. Bonne D. Rodriguez J. Chem. Eur. J. 2014; 20: 410
- 9i Zhu Y. Zhang L. Luo S. J. Am. Chem. Soc. 2014; 136: 14642
- 9j Quintard A. Cheshmedzhieva D. Sanchez Duque MM. Gaudel-Siri A. Naubron J.-V. Génisson Y. Plaquevent J.-C. Bugaut X. Rodriguez J. Constantieux T. Chem. Eur. J. 2015; 21: 778
- 10a Bertelsen S. Johansen RL. Jorgensen KA. Chem. Commun. 2008; 3016
- 10b Hatano M. Horibe T. Ishihara K. J. Am. Chem. Soc. 2009; 132: 56
- 10c Zhang W. Franzén J. Adv. Synth. Catal. 2010; 352: 499
- 10d Wu X. Liu Q. Fang H. Chen J. Cao W. Zhao G. Chem. Eur. J. 2012; 18: 12196
- 10e Huang Y.-M. Zheng C.-W. Zhao G. J. Org. Chem. 2015; 80: 3798
- 11a Nahm S. Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
- 11b Balasubramaniam S. Aidhen IS. Synthesis 2008; 3707
- 12a Hiyamizu H. Ooi H. Inomoto Y. Esumi T. Iwabuchi Y. Hatakeyama S. Org. Lett. 2001; 3: 473
- 12b Li W. Ma X. Fan W. Tao X. Li X. Xie X. Zhang Z. Org. Lett. 2011; 13: 3876
- 12c Roßbach J. Baumeister J. Harms K. Koert U. Eur. J. Org. Chem. 2013; 662
- 12d Wang Q. van Gemmeren M. List B. Angew. Chem. Int. Ed. 2014; 53: 13592
- 13a Chen Y. Sieburth SM. N. Synthesis 2002; 2191
- 13b Kulesza A. Ebetino FH. Mazur AW. Tetrahedron Lett. 2003; 44: 5511
- 13c Matsunaga S. Kinoshita T. Okada S. Harada S. Shibasaki M. J. Am. Chem. Soc. 2004; 126: 7559
- 13d Diehl J. Brückner R. Eur. J. Org. Chem. 2017; 278
- 14 Nugent J. Schwartz BD. Org. Lett. 2016; 18: 3834
- 15a Presset M. Coquerel Y. Rodriguez J. J. Org. Chem. 2009; 74: 415
- 15b Dudognon Y. Presset M. Rodriguez J. Coquerel Y. Bugaut X. Constantieux T. Chem. Commun. 2016; 52: 3010
- 16 The free N,O-dimethylhydroxylamine was obtained by mixing its commercially available hydrochloride with an equimolar amount of triethylamine in toluene overnight, followed by filtration to remove triethylammonium chloride.
- 17 Du H. Rodriguez J. Bugaut X. Constantieux T. Chem. Eur. J. 2014; 20: 8458
- 18 Alonso D. Baeza A. Chinchilla R. Gómez C. Guillena G. Pastor I. Ramón D. Molecules 2017; 22: 895
- 19 Okino T. Hoashi Y. Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
- 20 Okino T. Hoashi Y. Furukawa T. Xu X. Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
- 21 Hamza A. Schubert G. Soós T. Pápai I. J. Am. Chem. Soc. 2006; 128: 13151
- 22a Malerich JP. Hagihara K. Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
- 22b Jiang X. Zhang Y. Liu X. Zhang G. Lai L. Wu L. Zhang J. Wang R. J. Org. Chem. 2009; 74: 5562
- 22c Almaşi D. Alonso DA. Gómez-Bengoa E. Nájera C. J. Org. Chem. 2009; 74: 6163
- 22d Manzano R. Andrés JM. Pedrosa R. Synlett 2011; 2203
- 23 Liu B. Han X. Dong Z. Lv H. Zhou H.-B. Dong C. Tetrahedron: Asymmetry 2013; 24: 1276
- 24a Vakulya B. Varga S. Csámpai A. Soós T. Org. Lett. 2005; 7: 1967
- 24b McCooey SH. Connon SJ. Angew. Chem. Int. Ed. 2005; 44: 6367
- 25 Chauhan P. Mahajan S. Kaya U. Hack D. Enders D. Adv. Synth. Catal. 2015; 357: 253
- 26 For a previous unsuccessful attempt to react a Weinreb β-ketoamide with an aliphatic nitroolefin in the presence of a bifunctional thiourea catalyst, see ref. 10a.
- 27a Taft RW. J. Am. Chem. Soc. 1953; 75: 4538
- 27b Charton M. J. Am. Chem. Soc. 1975; 97: 1552
- 27c Charton M. J. Org. Chem. 1976; 41: 2217
- 27d Harper KC. Sigman MS. J. Org. Chem. 2013; 78: 2813
- 28a Horitsugi N. Kojima K. Yasui K. Sohtome Y. Nagasawa K. Asian J. Org. Chem. 2014; 3: 445
- 28b Goldys AM. Núñez MG. Dixon DJ. Org. Lett. 2014; 16: 6294
- 29 Fujii H. Oshima K. Utimoto K. Tetrahedron Lett. 1991; 32: 6147
- 30 Evans DA. Chapman KT. Tetrahedron Lett. 1986; 27: 5939
- 31a Vesely J. Rios R. Córdova A. Tetrahedron Lett. 2008; 49: 1137
- 31b Frias M. Mas-Ballesté R. Arias S. Alvarado C. Alemán J. J. Am. Chem. Soc. 2017; 139: 672
- 32a Touré BB. Hall DG. Chem. Rev. 2009; 109: 4439
- 32b Ruijter E. Scheffelaar R. Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
- 32c Climent MJ. Corma A. Iborra S. RSC Adv. 2012; 2: 16
- 32d Dömling A. Wang W. Wang K. Chem. Rev. 2012; 112: 3083
- 32e Brauch S. van Berkel SS. Westermann B. Chem. Soc. Rev. 2013; 42: 4948
- 32f Cioc RC. Ruijter E. Orru RV. A. Green Chem. 2014; 16: 2958
- 32g Zhu J. Wang Q. Wang M.-X. Multicomponent Reactions in Organic Synthesis . Wiley-VCH; Weinheim: 2014
- 33a Jiang B. Rajale T. Wever W. Tu S.-J. Li G. Chem. Asian J. 2010; 5: 2318
- 33b Bugaut X. Bonne D. Coquerel Y. Rodriguez J. Constantieux T. Curr. Org. Chem. 2013; 17: 1920
- 34 Bugaut X. Constantieux T. Coquerel Y. Rodriguez J. 1,3-Dicarbonyls in Multicomponent Reactions . In Multicomponent Reactions in Organic Synthesis . Zhu J. Wang Q. Wang M.-X. Wiley-VCH; Weinheim: 2014: 109
- 35a Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
- 35b de Graaff C. Ruijter E. Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
- 35c Marson CM. Chem. Soc. Rev. 2012; 41: 7712
- 35d Volla CM. R. Atodiresei I. Rueping M. Chem. Rev. 2014; 114: 2390
- 36a Wu X. Dai X. Nie L. Fang H. Chen J. Ren Z. Cao W. Zhao G. Chem. Commun. 2010; 46: 2733
- 36b Rueping M. Volla CM. R. Bolte M. Raabe G. Adv. Synth. Catal. 2011; 353: 2853
- 36c Du H. Rodriguez J. Bugaut X. Constantieux T. Adv. Synth. Catal. 2014; 356: 851
- 36d Rueping M. Antonchick AP. Angew. Chem. Int. Ed. 2008; 47: 5836
- 36e Hong B.-C. Liao W.-K. Dange NS. Liao J.-H. Org. Lett. 2013; 15: 468
- 36f Blümel M. Chauhan P. Hahn R. Raabe G. Enders D. Org. Lett. 2014; 16: 6012
- 36g Rong C. Pan H. Liu M. Tian H. Shi Y. Chem. Eur. J. 2016; 22: 2887
- 37a Han R.-G. Wang Y. Li Y.-Y. Xu P.-F. Adv. Synth. Catal. 2008; 350: 1474
- 37b Veverková E. Liptáková L. Veverka M. Šebesta R. Tetrahedron: Asymmetry 2013; 24: 548
- 37c Tan Y. Chen Y.-J. Lin H. Luan H.-L. Sun X.-W. Yang X.-D. Lin G.-Q. Chem. Commun. 2014; 50: 15913
- 38a Marigo M. Wabnitz TC. Fielenbach D. Jørgensen KA. Angew. Chem. Int. Ed. 2005; 44: 794
- 38b Hayashi Y. Gotoh H. Hayashi T. Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
- 38c Jensen KL. Dickmeiss G. Jiang H. Albrecht Ł. Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
- 38d Meninno S. Lattanzi A. Chem. Commun. 2013; 49: 3821
- 39 Relative configuration was attributed thanks to 2D NMR studies and absolute configuration in accordance with literature precedents. See ref. 39 for further details.
- 40a Dudognon Y. Du H. Rodriguez J. Bugaut X. Constantieux T. Chem. Commun. 2015; 51: 1980
- 40b Du H. Dudognon Y. Sanchez Duque M. dM. Goudedranche S. Bonne D. Rodriguez J. Bugaut X. Constantieux T. Synthesis 2016; 48: 3479
- 41 Jurberg ID. Peng B. Wöstefeld E. Wasserloos M. Maulide N. Angew. Chem. Int. Ed. 2012; 51: 1950
- 42 Kouznetsov VV. Tetrahedron 2009; 65: 2721
Selected examples:
For selected examples, see:
For selected examples, see:
For a related study with other tertiary β-ketoamides in the presence of a bifunctional supported iminophosphorane-thiourea catalyst, see:
For unsuccessful attempts in the presence of proline, see:
For a recent highly efficient and selective variant, see:
For selected reviews, see:
For selected examples, see:
For selected other related strategies for the synthesis of 1,4,5,6,-tetrahydripyridines, see:
For other organocatalyzed synthetic routes towards 1,2,3,4-tetrahydropyridines, see: