Synlett 2017; 28(10): 1127-1133
DOI: 10.1055/s-0036-1588745
synpacts
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Secosterols as an Arena for C–H Functionalization and C–C Manipulation Tactics

Robert C. Heinze
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany   Email: robert.heinze@fu-berlin.de   Email: philipp.heretsch@fu-berlin.de
,
Philipp Heretsch*
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany   Email: robert.heinze@fu-berlin.de   Email: philipp.heretsch@fu-berlin.de
› Author Affiliations
Further Information

Publication History

Received: 20 December 2016

Accepted: 17 February 2017

Publication Date:
08 March 2017 (online)


Abstract

The chemical synthesis of secosterols is an arena for the application of C–H functionalization methods as well as C–C manipulations. Studies on the innate reactivity of synthetic intermediates to undergo C–C scissions and rearrangements can shed light on biosynthetic pathways, or, provide proof for biosynthetic proposals. Examples of the authors work (synthesis of the 14,15-secosterol strophasterol A), as well as examples from current literature (Tian’s synthetic work on 13,14:14,15-disecosterols glaucogenins C and D, and Baran’s synthesis of 9,10-secosterol cortistatin A) are discussed.

1 Introduction

2 The Synthesis of Strophasterol A Employing the Concept of Innate Reactivity

3 Synthetic Work in the Glaucogenin Family of Natural Products

4 The Synthesis of Cortistatin A Using a Radical Ring Expansion

5 Conclusion

 
  • References

    • 1a Nicolaou KC, Sorensen EJ. Classics in Total Synthesis: Targets, Strategies, Methods . Wiley-VCH; Weinheim: 1996
    • 1b Nicolaou KC, Snyder SA. Classics in Total Synthesis II: More Targets, Strategies, Methods. Wiley-VCH; Weinheim: 2003
    • 1c Nicolaou KC, Chen JS. Classics in Total Synthesis III: Further Targets, Strategies, Methods. Wiley-VCH; Weinheim: 2011
    • 3a Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010-3010
    • 3b Burns NZ, Baran PS, Hoffmann RW. Angew. Chem. Int. Ed. 2009; 48: 2854-2854
    • 4a Christmann M. Angew. Chem. Int. Ed. 2008; 47: 2740-2740
    • 4b White MC. Science 2012; 335: 807-807
    • 4c Breslow R, Scholl PC. J. Am. Chem. Soc. 1971; 93: 2331-2331
    • 4d Snider BB, Corcoran RJ, Breslow R. J. Am. Chem. Soc. 1975; 97: 6580-6580
    • 4e Chen K, Baran PS. Nature (London, U.K.) 2009; 459: 824-824
    • 4f Chen MS, White MC. Science 2010; 327: 566-566
    • 4g Bigi MA, Reed SA, White MC. J. Am. Chem. Soc. 2012; 134: 9721-9721
    • 4h Renata H, Zhou Q, Baran PS. Science 2013; 339: 59-59
    • 4i Jørgensen L, McKerrall SJ, Kuttruff CA, Ungeheuer F, Felding J, Baran PS. Science 2013; 341: 878-878
    • 4j Gormisky PE, White MC. J. Am. Chem. Soc. 2013; 135: 14052-14052
    • 4k Wilde NC, Isomura M, Mendoza A, Baran PS. J. Am. Chem. Soc. 2014; 136: 4909-4909
  • 5 Kuttruff CA, Eastgate MD, Baran PS. Nat. Prod. Rep. 2014; 31: 419-419
  • 6 Penov Gaši K, Sakač M, Jovanović-Šanta S, Djurendić E. Curr. Org. Chem. 2014; 18: 216-216
    • 7a Salvador JA. R, Silvestre SM, Moreira VM. Curr. Org. Chem. 2006; 10: 2227-2227
    • 7b Salvador JA. R, Silvestre SM, Moreira VM. Curr. Org. Chem. 2008; 12: 492-492
    • 7c Salvadora JA. R, Silvestre SM, Moreira VM. Curr. Org. Chem. 2012; 16: 1243-1243
    • 8a Holte D, Götz DC. G, Baran PS. J. Org. Chem. 2012; 77: 825-825
    • 8b Foo K, Usui I, Götz DC. G, Werner EW, Holte D, Baran PS. Angew. Chem. Int. Ed. 2012; 51: 11491-11491
    • 8c Ishihara Y, Mendoza A, Baran PS. Tetrahedron 2013; 69: 5685-5685
    • 9a Wu J, Tokuyama S, Nagai K, Yasuda N, Noguchi K, Matsumoto T, Hirai H, Kawagishi H. Angew. Chem. Int. Ed. 2012; 51: 10820-10820
    • 9b Wu J, Kobori H, Kawaide M, Suzuki T, Choi J.-H, Yasuda N, Noguchi K, Matsumoto T, Hirai H, Kawagishi H. Biosci., Biotechnol., Biochem. 2013; 77: 1779-1779
  • 10 Yang L. CN 105078954, 2015
  • 11 Heinze RC, Lentz D, Heretsch P. Angew. Chem. Int. Ed. 2016; 55: 11656-11656
  • 12 Nakagawa T, Hayashi K, Mitsuhashi H. Tetrahedron Lett. 1982; 23: 757-757
  • 13 Nakagawa T, Hayashi K, Mitsuhashi H. Chem. Pharm. Bull. 1983; 31: 870-870
  • 14 Li Y, Wang L, Li S, Chen X, Shen Y, Zhang Z, He H, Xu W, Shu Y, Liang G, Fang R, Hao X. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 8083-8083
  • 15 Gui J, Wang D, Tian W. Angew. Chem. Int. Ed. 2011; 50: 7093-7093
  • 16 Gui J, Tian H, Tian W. Org. Lett. 2013; 15: 4802-4802
    • 17a Aoki S, Watanabe Y, Sanagawa M, Setiawan A, Kotoku N, Kobayashi M. J. Am. Chem. Soc. 2006; 128: 3148-3148
    • 17b Watanabe Y, Aoki S, Tanabe D, Setiawan A, Kobayashi M. Tetrahedron 2007; 63: 4074-4074
    • 17c Aoki S, Watanabe Y, Tanabe D, Setiawan A, Arai M, Kobayashi M. Tetrahedron Lett. 2007; 48: 4485-4485
    • 17d Aoki S, Watanabe Y, Tanabe D, Arai M, Suna H, Miyamoto K, Tsujibo H, Tsujikawa K, Yamamoto H, Kobayashi M. Bioorg. Med. Chem. 2007; 15: 6758-6758
    • 18a Nicolaou KC, Sun Y.-P, Peng X.-S, Polet D, Chen DY.-K. Angew. Chem. Int. Ed. 2008; 47: 7310-7310
    • 18b Lee HM, Nieto-Oberhuber C, Shair MD. J. Am. Chem. Soc. 2008; 130: 16864-16864
    • 18c Nicolaou KC, Peng X.-S, Sun Y.-P, Polet D, Zou B, Lim CS, Chen DY.-K. J. Am. Chem. Soc. 2009; 131: 10587-10587
    • 18d Simmons EM, Hardin-Narayan AR, Guo X, Sarpong R. Tetrahedron 2010; 66: 4696-4696
    • 18e Flyer AN, Si C, Myers AG. Nat. Chem. 2010; 2: 886-886
    • 18f Fang L, Chen Y, Huang J, Liu L, Quan J, Li C.-C, Yang Z. J. Org. Chem. 2011; 76: 2479-2479
    • 18g Yamashita S, Iso K, Kitajima K, Himuro M, Hirama M. J. Org. Chem. 2011; 76: 2408-2408
    • 18h Nilson MG, Funk RL. J. Am. Chem. Soc. 2011; 133: 12451-12451
    • 18i Yamashita S, Hirama MY. J. Synth. Org. Chem. Jpn. 2013; 71: 768-768
    • 18j Kuang L, Liu LL, Chiu P. Chem. Eur. J. 2015; 21: 14287-14287
  • 19 Shenvi RA, Guerrero CA, Shi J, Li C.-C, Baran PS. J. Am. Chem. Soc. 2008; 130: 7241-7241