Synlett 2017; 28(02): 143-147
DOI: 10.1055/s-0036-1588677
synpacts
© Georg Thieme Verlag Stuttgart · New York

Using Radical SAM Chemistry to Access Nucleoside-Containing Compounds

Xinjian Ji
Department of Chemistry, Fudan University, Shanghai 200433, P. R. of China   Email: qizhang@sioc.ac.cn
,
Qi Zhang*
Department of Chemistry, Fudan University, Shanghai 200433, P. R. of China   Email: qizhang@sioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 27 October 2016

Accepted after revision: 24 November 2016

Publication Date:
12 December 2016 (online)


Abstract

The radical S-adenosylmethionine (SAM) enzyme NosL catalyzes the conversion of l-tryptophan (l-Trp) into 3-methyl-2-indolic acid (MIA) in the biosynthesis of the thiopeptide antibiotic nosiheptide, and this reaction is initiated by the 5′-deoxyadenosyl (dAdo)-radical-mediated hydrogen-atom abstraction from the l-Trp amino group. NosL also exhibits diverse promiscuous activities on various l-Trp analogues, and remarkably, the canonical dAdo-radical-mediated hydrogen abstraction can be switched to radical addition reactions by using a substrate analogue containing an olefin moiety. These findings highlight the intriguing chemistry and catalytic versatility of the radical SAM superfamily enzymes, offering a promising strategy to produce nucleoside-containing compounds, which could be of pharmaceutical interest.

 
  • References

    • 1a Stubbe J, van Der Donk WA. Chem. Rev. 1998; 98: 705
    • 1b Frey PA, Hegeman AD, Reed GH. Chem. Rev. 2006; 106: 3302
    • 1c Buckel W, Golding BT. Radical Enzymes. In Encyclopedia of Radicals in Chemistry, Biology and Materials . John Wiley and Sons; New York: 2012
    • 2a Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE. Nucleic Acids Res. 2001; 29: 1097
    • 2b Booker SJ, Grove TL. F1000 Biol. Rep. 2010; 2: 52
    • 2c Vey JL, Drennan CL. Chem. Rev. 2011; 111: 2487
    • 2d Wang J, Woldring RP, Roman-Melendez GD, McClain AM, Alzua BR, Marsh EN. ACS Chem. Biol. 2014; 9: 1929
    • 3a Frey PA, Hegeman AD, Ruzicka FJ. Crit. Rev. Biochem. Mol. Biol. 2008; 43: 63
    • 3b Broderick JB, Duffus BR, Duschene KS, Shepard EM. Chem. Rev. 2014; 114: 4229
    • 4a Bandarian V. Biochim. Biophys. Acta 2012; 1824: 1245
    • 4b Fluhe L, Marahiel MA. Curr. Opin. Chem. Biol. 2013; 17: 605
    • 4c Mehta AP, Abdelwahed SH, Mahanta N, Fedoseyenko D, Philmus B, Cooper LE, Liu Y, Jhulki I, Ealick SE, Begley TP. J. Biol. Chem. 2015; 290: 3980
    • 4d Lanz ND, Booker S. J. Biochim. Biophys. Acta 2015;
    • 4e Byer AS, Shepard EM, Peters JW, Broderick JB. J. Biol. Chem. 2015; 290: 3987
    • 4f Jarrett JT. J. Biol. Chem. 2015; 290: 3972
    • 4g Stojkovic V, Fujimori DG. Methods Enzymol. 2015; 560: 355
    • 4h Zhang Q, van der Donk WA, Liu W. Acc. Chem. Res. 2012; 45: 555
    • 4i Ding W, Li YZ, Zhang Q. ACS Chem. Biol. 2015; 10: 1590
    • 4j Benjdia A, Berteau O. Biochem. Soc. Trans. 2016; 44: 109
    • 4k Hu Y, Ribbe MW. Curr. Opin. Chem. Biol. 2016;
    • 4l Landgraf BJ, McCarthy EL, Booker SJ. Annu. Rev. Biochem. 2016;
    • 4m Ding W, Li Q, Jia Y, Ji X, Qianzhu H, Zhang Q. ChemBioChem. 2016; 17: 1191
    • 4n Zhou S, Alkhalaf LM, de Los Santos EL, Challis GL. Curr. Opin. Chem. Biol. 2016; 35: 73
  • 5 Mahanta N, Fedoseyenko D, Dairi T, Begley TP. J. Am. Chem. Soc. 2013; 135: 15318
    • 6a Lees NS, Chen DW, Walsby CJ, Behshad E, Frey PA, Hoffmann BM. J. Am. Chem. Soc. 2006; 128: 10145
    • 6b Horitani M, Byer AS, Shisler KA, Chandra T, Broderick JB, Hoffman BM. J. Am. Chem. Soc. 2015; 137: 7111
    • 7a Yang L, Li L. J. Biol. Chem. 2015; 290: 4003
    • 7b Benjdia A, Heil K, Winkler A, Carell T, Schlichting I. Chem. Commun. 2014; 50: 14201
    • 7c Setlow P, Li L. Photochem. Photobiol. 2015; 91: 1263
    • 8a Bandarian V, Reed GH. Ethanolamine Ammonia-Lyase . In The Chemistry and Biochemistry of B12 . Banerjee R. John Wiley; New York: 1999: 811-833
    • 8b Banerjee R. Chem. Rev. 2003; 103: 2083
    • 8c Toraya T. Chem. Rev. 2003; 103: 2095
    • 8d Cracan V, Banerjee R. Biochemistry 2012; 51: 6039
    • 8e Marsh EN, Melendez GD. Biochim. Biophys. Acta 2012; 1824: 1154
    • 8f Toraya T. Arch. Biochem. Biophys. 2014; 544: 40
  • 9 Miller D, O'Brien K, Xu H, White RH. J. Bacteriol. 2014; 196: 1064
    • 10a Yu Y, Duan L, Zhang Q, Liao R, Ding Y, Pan H, Wendt-Pienkowski E, Tang G, Shen B, Liu W. ACS Chem. Biol. 2009; 4: 855
    • 10b Zhang Q, Li Y, Chen D, Yu Y, Duan L, Shen B, Liu W. Nat. Chem. Biol. 2011; 7: 154
    • 10c Zhang Q, Chen D, Lin J, Liao R, Tong W, Xu Z, Liu W. J. Biol. Chem. 2011; 286: 21287
  • 11 Nicolet Y, Zeppieri L, Amara P, Fontecilla-Camps JC. Angew. Chem. Int. Ed. 2014; 53: 11840
  • 12 Ji X, Li Y, Ding W, Zhang Q. Angew. Chem. Int. Ed. 2015; 54: 9021
  • 13 Bhandari DM, Xu H, Nicolet Y, Fontecilla-Camps JC, Begley TP. Biochemistry 2015; 54: 4767
  • 14 Sicoli G, Mouesca JM, Zeppieri L, Amara P, Martin L, Barra AL, Fontecilla-Camps JC, Gambarelli S, Nicolet Y. Science 2016; 351: 1320
    • 15a Ding W, Ji X, Li Y, Zhang Q. Front. Chem. 2016; 4: 27
    • 15b Qianzhu H, Ji W, Ji X, Chu L, Guo C, Lu W, Ding W, Gao J, Zhang Q. Chem. Commun. 2017; DOI: 10.1039/C6CC08869D.
  • 16 Ji XJ, Li YZ, Jia YL, Ding W, Zhang Q. Angew. Chem. Int. Ed. 2016; 55: 3334
  • 17 Ji X, Liu WQ, Yuan S, Yin Y, Ding W, Zhang Q. Chem. Commun. 2016; 52: 10555
  • 18 Ji X, Li Y, Xie L, Lu H, Ding W, Zhang Q. Angew. Chem. Int. Ed. 2016; 55: 11845
  • 19 Hioe J, Zipse H. Chemistry 2012; 18: 16463
  • 20 Lin G, Li L. Angew. Chem. Int. Ed. 2013; 52: 5594
  • 21 Wagner AF. V, Demand J, Schilling G, Pils T, Knappe J. Biochem. Biophys. Res. Comm. 1999; 254: 306
  • 22 Challis GL. J. Ind. Microbiol. Biotechnol. 2014; 41: 219
  • 23 Niu G, Tan H. Trends Microbiol. 2015; 23: 110
    • 24a Roje S. Phytochemistry 2006; 67: 1686
    • 24b Sufrin JR, Finckbeiner S, Oliver CM. Mar. Drugs 2009; 7: 401
    • 24c Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M. Biochem. J. 2013; 451: 145
    • 24d Zhang Y, Zhu X, Torelli AT, Lee M, Dzikovski B, Koralewski RM, Wang E, Freed J, Krebs C, Ealick SE, Lin H. Nature 2010; 465: 891