Synlett 2017; 28(18): 2345-2352
DOI: 10.1055/s-0036-1588511
synpacts
© Georg Thieme Verlag Stuttgart · New York

Heterocycles as Moderators of Allyl Cation Cycloaddition Reactivity

Jan Hullaert
Organic Synthesis Research Group, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium   Email: johan.winne@ugent.be
,
Bram Denoo
Organic Synthesis Research Group, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium   Email: johan.winne@ugent.be
,
Mien Christiaens
Organic Synthesis Research Group, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium   Email: johan.winne@ugent.be
,
Brenda Callebaut
Organic Synthesis Research Group, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium   Email: johan.winne@ugent.be
,
Organic Synthesis Research Group, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium   Email: johan.winne@ugent.be
› Author Affiliations
Further Information

Publication History

Received: 30 May 2017

Accepted after revision: 27 June 2017

Publication Date:
27 July 2017 (online)


Abstract

For the rapid elaboration of polycarbocyclic scaffolds, prevalent in many important families of terpenoid natural products, allyl cations derived from simple heterocyclic alcohols can be used as versatile reaction partners in both (4+3) and (3+2) cycloaddition pathways. Our recent progress in this area is outlined, pointing towards the untapped potential of heterocycles to act as reagents in novel or known but challenging organic transformations.

1 Heterocyclic Reagents

2 Cycloadditions and Allyl Cations

3 Furfuryl Cations in Cycloadditions

4 Heterocycle-Substituted Cations in Cycloadditions

5 Mechanistic Considerations

6 Conclusions and Outlook

 
  • References and Notes

  • 1 Höfle G. Steglich W. Vorbrüggen H. Angew. Chem., Int. Ed. Engl. 1978; 17: 569
  • 2 Flanigan DM. Romanov-Michailidis F. White NA. Rovis T. Chem. Rev. 2015; 115: 9307
  • 3 List B. Tetrahedron 2002; 58: 5573
  • 4 de Nooy AE. Besemer AC. van Bekkum H. Synthesis 1996; 1153
  • 5 Padwa A. Murphree SS. ARKIVOC 2006; (iii): 6
  • 6 Stout DM. Meyers AI. Chem. Rev. 1982; 82: 223
  • 7 Devaraj NK. Weissleder R. Hilderbrand SA. Bioconjugate Chem. 2008; 19: 2297
  • 8 De Bruycker K. Billiet S. Houck HA. Chattopadhyay S. Winne JM. Du Prez FE. Chem. Rev. 2016; 116: 3919
  • 9 Seebach D. Angew. Chem., Int. Ed. Engl. 1990; 29: 1320
  • 10 Note on nomenclature and the use of the term ‘cycloaddition’: The use of the word cycloaddition and its precise meaning is often a source of discussion. For the purpose of this text, ‘cy­cloaddition’ is intented to indicate the net transformation of two or more (conjugated) π systems with the formation of new single bonds at the expense of double bonds, leading to a novel cyclic bonding array, without further mechanistic implications. In this light, the reaction between a furfuryl alcohol and a diene giving the seven-membered ring adduct is not a cycloaddition. On the other hand, the transformation of the intermediate furfuryl cation and the diene into the initially formed cationic adduct (before rearomatization) is a cycloaddition by this definition.
    • 11a Lecker SH. Nguyen NH. Vollhardt KP. C. J. Am. Chem. Soc. 1986; 108: 856
    • 11b Wender PA. Howbert JJ. J Am. Chem. Soc. 1981; 103: 688
  • 12 Poulter CD. Wiggins PL. Le AT. J. Am. Chem. Soc. 1981; 103: 3926

    • For a few notable recent exceptions, see:
    • 13a Wu H. Wang Q. Zhu J. Angew. Chem. Int. Ed. 2016; 55: 15411
    • 13b Xie Y. Cheng G.-J. Lee S. Kaib PS. J. Thiel W. List B. J. Am. Chem. Soc. 2016; 138: 14538
    • 13c Wright NE. Snyder SA. Angew. Chem. Int. Ed. 2014; 53: 3409
    • 13d Xie Y. Floreancig PE. Angew. Chem. Int. Ed. 2014; 53: 4926
    • 13e Tissot M. Phipps RJ. Lucas C. Leon RM. Pace RD. M. Ngouansavanh T. Gaunt MJ. Angew. Chem. Int. Ed. 2014; 53: 13498
    • 13f Nicolaou KC. Hale CR. H. Nilewski C. Ioannidou HA. ElMarrouni A. Nilewski LG. Beabout K. Wang TT. Shamoo Y. J. Am. Chem. Soc. 2014; 136: 12137
    • 13g Sá MM. Ferreira M. Caramori GF. Zaramello L. Bortoluzzi AJ. Faggion D. Domingos JB. Eur. J. Org. Chem. 2013; 5180
    • 13h Miyata K. Kutsuna H. Kawakami S. Kitamura M. Angew. Chem. Int. Ed. 2011; 50: 4649
  • 14 Hoffmann HM. R. Joy DR. Suter AK. J. Chem. Soc. B 1968; 57
  • 15 Hoffmann HM. R. Angew. Chem., Int. Ed. Engl. 1973; 12: 819
  • 16 Fort AW. J. Am. Chem. Soc. 1962; 84: 4979
  • 17 Hoffmann HM. R. Angew. Chem., Int. Ed. Engl. 1984; 23: 1
  • 18 Mann J. Tetrahedron 1986; 42: 4611
  • 20 Li H. Wu J. Synthesis 2015; 47: 22
    • 21a Mizuno H. Domon K. Masuya K. Tanino K. Kuwajima I. J. Org. Chem. 1999; 64: 2648
    • 21b Harmata M. Carter KW. Tetrahedron Lett. 1997; 38: 7985
  • 22 Pattenden G. Winne JM. Tetrahedron Lett. 2009; 50: 7310
  • 23 Winne JM. Catak S. Waroquier M. Van Speybroeck V. Angew. Chem. Int. Ed. 2011; 50: 11990
    • 24a Liu Y. Sun Z. Li S. Xiang K. Zhang Y. Li Y. RSC Adv. 2016; 6: 26954
    • 24b Laplace DR. Winne JM. Synlett 2015; 26: 467
    • 24c Li Y. Palframan MJ. Pattenden G. Winne JM. Tetrahedron 2014; 70: 7229
    • 24d Hullaert J. Laplace DR. Winne JM. Eur. J. Org. Chem. 2014; 3097
    • 24e Laplace DR. Verbraeken B. Van Hecke K. Winne JM. Chem Eur. J. 2014; 20: 253
    • 24f Palframan MJ. Pattenden G. Tetrahedron Lett. 2013; 54: 324
    • 24g Zhang J. Li L. Wang Y. Wang W. Xue J. Li Y. Org. Lett. 2012; 14: 4528
  • 25 Ivanova OA. Budynina EM. Chagarovskiy AO. Kaplun AE. Trushkov IV. Melnikov MY. Adv. Synth. Catal. 2011; 353: 1125
  • 26 Han X. Li H. Hughes RP. Wu J. Angew. Chem. Int. Ed. 2012; 51: 10390
  • 27 Chepurny OG. Leech CA. Tomanik M. DiPoto MC. Li H. Han X. Meng Q. Cooney RN. Wu J. Holz GG. Sci. Rep. 2016; 6: 28934
  • 28 Gong W. Liu Y. Zhang J. Jiao Y. Xue J. Li Y. Chem. Asian J. 2013; 8: 546
  • 29 Harmata M. In Advances in Cycloaddition . Lautens M. JAI; Greenwich: 1997. Vol. 4 41-85
    • 30a Caputo R. Palumbo G. Pedatella S. Tetrahedron 1994; 50: 7265
    • 30b Gauthier DR. Zandi KS. Shea KJ. Tetrahedron 1998; 54: 2289
    • 31a Harmata M. Fletcher VR. Claassen RJ. J. Am. Chem. Soc. 1991; 113: 9861
    • 31b Harmata M. Kahraman M. Tetrahedron Lett. 1998; 39: 3421
    • 31c Harmata M. Jones DE. Tetrahedron Lett. 1996; 37: 783
    • 31d Harmata M. Bohnert G. Barnes CL. Tetrahedron Lett. 2001; 42: 149
    • 31e Harmata M. Carter KW. ARKIVOC 2002; (viii): 62
    • 31f Harmata M. Kahraman M. Adenu G. Barnes CL. Heterocycles 2004; 62: 583
    • 31g Topinka M. Tata RR. Harmata M. Org. Lett. 2014; 16: 4476
  • 32 Caputo R. Guaragna A. Palumbo G. Pedatella S. J. Org. Chem. 1997; 62: 9369
  • 33 Hullaert J. Winne JM. Angew. Chem. Int. Ed. 2016; 55: 13254
  • 34 Masuya K. Domon K. Tanino K. Kuwajima I. J. Am. Chem. Soc. 1998; 120: 1724
  • 35 Katritzky AR. Serdyuk L. Xie L. Ghiviriga I. J. Org. Chem. 1997; 62: 6215
  • 36 Volkova YA. Budynina EM. Kaplun AE. Ivanova OA. Chagarovskiy AO. Skvortsov DA. Rybakov VB. Trushkov IV. Melnikov MY. Chem. Eur. J. 2013; 19: 6586
  • 37 Angle SR. Arnaiz DA. J. Org. Chem. 1992; 57: 5937
  • 38 Harrison C. Leineweber R. Moody CJ. Williams JM. J. J. Chem. Soc., Perkin Trans. 1 1995; 1127
  • 39 Hertsen, D.; Denoo, B.; Avci, O. N.; Van Speybroeck, V.; Winne, J. M.; Catak, S. unpublished results.
  • 40 Lesburg CA. Zhai G. Cane DE. Christianson DW. Science 1997; 277: 1820
  • 41 Thoma R. Schulz-Gasch T. D'Arcy B. Benz J. Aebi J. Dehmlow H. Hennig M. Stihle M. Ruf A. Nature 2004; 432: 118
  • 42 Zhang Q. Tiefenbacher K. Nat. Chem. 2015; 7: 197
  • 43 Woodward RB. In Pointers and Pathways in Research: Six Lectures in the Fields of Organic Chemistry and Medicine. O’Connor M. CIBA of India; Bombay: 1963: 1