Synthesis 2017; 49(16): 3511-3534
DOI: 10.1055/s-0036-1588481
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Reactions of Heteroatom-Centered Radicals

School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan   Email: tsuyoshi@p.kanazawa-u.ac.jp
› Author Affiliations
This work was supported by MEXT/JSPS KAKENHI Grant-in-Aid for Scientific Research (C) (Grant No. 16K08159).
Further Information

Publication History

Received: 27 February 2017

Accepted after revision: 05 April 2017

Publication Date:
26 July 2017 (online)


Abstract

Heteroatom-centered radicals show versatile reactivity and offer useful synthetic methods in organic chemistry. The development of new approaches for forming heteroatom-centered radicals has recently expanded the practicality of radical chemistry for synthesis. This review focuses on recent advances in reactions of representative heteroatom-centered radicals.

1 Introduction

2 Group 17 Elements: Chlorine and Bromine Radicals

3 Group 15 and Group 16 Elements

3.1 Nitrogen- and Oxygen-Centered Radicals

3.2 Phosphorus- and Sulfur-Centered Radicals

3.3 Other Radicals

4 Group 14 Elements: Silicon-Centered Radicals

5 Group 13 Elements: Boron-Centered Radicals

6 Conclusion

 
  • References

  • 1 Chatgilialoglu C. Studer A. Encyclopedia of Radicals in Chemistry, Biology and Materials . Vol. 1–4. Wiley; Chichester: 2012

    • Recent reviews:
    • 2a Tang S. Liu K. Liu C. Lei A. Chem. Soc. Rev. 2015; 44: 1070
    • 2b Liu D. Liu C. Lei A. Chem. Asian J. 2015; 10: 2040
    • 2c Hammer SG. Heinrich MR. In Comprehensive Organic Synthesis . 2nd ed., Vol. 4; Molander GA. Knochel P. Elsevier; Oxford: 2014: 495-516
    • 2d Subramanian H. Landais Y. Sibi MP. In Comprehensive Organic Synthesis . 2nd ed., Vol. 4; Molander GA. Knochel P. Elsevier; Oxford: 2014: 699-741
    • 2e Loertscher BM. Castle SL. In Comprehensive Organic Synthesis . 2nd ed., Vol. 4; Molander GA. Knochel P. Elsevier; Oxford: 2014: 742-809
    • 2f Miyabe H. Synlett 2012; 23: 1709
    • 2g Rowlands GJ. Tetrahedron 2010; 66: 1593
    • 2h Majumdar KC. Basu PK. Chattopadhyay SK. Tetrahedron 2007; 63: 793
    • 2i Radicals in Synthesis I: Methods and Mechanisms. Gansäuer A. Springer; Berlin: 2006
    • 2j Radicals in Synthesis II: Complex Molecules . Gansäuer A. Springer; Berlin: 2006
  • 4 Martin CD. Soleilhavoup M. Bertrand G. Chem. Sci. 2013; 4: 3020
  • 5 Fokin AA. Schreiner PR. Chem. Rev. 2002; 102: 1551
  • 6 Chatalova-Sazepin C. Hemelaere R. Paquin J.-F. Sammis GM. Synthesis 2015; 47: 2554
  • 7 Lee WH. Suk JW. Chou H. Lee J. Hao Y. Wu Y. Piner R. Akinwande D. Kim KS. Ruoff RS. Nano Lett. 2012; 12: 2374
  • 9 Shields BJ. Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
  • 10 Heitz DR. Tellis JC. Molander GA. J. Am. Chem. Soc. 2016; 138: 12715

    • Recent reviews on photocatalysis:
    • 11a Shaw MH. Twilton J. MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 11b Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Acc. Chem. Res. 2016; 49: 1911
    • 11c Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
  • 12 Kippo T. Hamaoka K. Ryu I. J. Am. Chem. Soc. 2013; 135: 632
  • 13 Kippo T. Hamaoka K. Ueda M. Fukuyama T. Ryu I. Tetrahedron 2016; 72: 7866
  • 14 Minozzi M. Nanni D. Spagnolo P. Chem. Eur. J. 2009; 15: 7830
  • 15 Foo K. Sella E. Thomé I. Eastgate MD. Baran PS. J. Am. Chem. Soc. 2014; 136: 5279
  • 16 Allen LJ. Cabrera PJ. Lee M. Sanford MS. J. Am. Chem. Soc. 2014; 136: 5607
    • 17a Boursalian GB. Ham WS. Mazzotti AR. Ritter T. Nat. Chem. 2016; 8: 810
    • 17b Boursalian GB. Ngai M.-Y. Hojczyk NK. Ritter T. J. Am. Chem. Soc. 2013; 135: 13278
    • 18a Zhu H. Leung JC. T. Sammis GM. J. Org. Chem. 2015; 80: 965
    • 18b Rueda-Becerril M. Leung JC. T. Dunbar CR. Sammis GM. J. Org. Chem. 2011; 76: 7720
    • 18c Zlotorzynska M. Zhai H. Sammis GM. Org. Lett. 2008; 10: 5083
    • 19a Wolff ME. Chem. Rev. 1963; 63: 55
    • 19b Löffler K. Freytag C. Ber. Dtsch. Chem. Ges. 1909; 42: 3427
    • 19c Hofmann AW. Ber. Dtsch. Chem. Ges. 1883; 16: 558
    • 20a Barton DH. R. Beaton JM. Geller LE. Pechet MM. J. Am. Chem. Soc. 1960; 82: 2640
    • 20b Barton DH. R. Beaton JM. Geller LE. Pechet MM. J. Am. Chem. Soc. 1961; 83: 4076

      Recent reviews on intramolecular hydrogen atom transfer in radical reactions:
    • 21a Chiba S. Chen H. Org. Biomol. Chem. 2014; 12: 4051
    • 21b Nechab M. Mondal S. Bertrand MP. Chem. Eur. J. 2014; 20: 16034
  • 22 Wappes EA. Fosu SC. Chopko TC. Nagib DA. Angew. Chem. Int. Ed. 2016; 55: 9974
  • 23 de Armas P. Carrau R. Concepción JI. Francisco CG. Hernández R. Suárez E. Tetrahedron Lett. 1985; 26: 2493
  • 24 Courtneidgh JL. Lusztyk J. Pagé D. Tetrahedron Lett. 1994; 35: 1003
  • 25 Liu T. Mei T.-S. Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 5871
    • 26a Czaplyski WL. Na CG. Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 13854
    • 26b Quinn RK. Könst ZA. Michalak SE. Schmidt Y. Szklarski AR. Flores AR. Nam S. Horne DA. Vanderwal CD. Alexanian EJ. J. Am. Chem. Soc. 2016; 138: 696
    • 26c Schmidt VA. Quinn RK. Brusoe AT. Alexanian EJ. J. Am. Chem. Soc. 2014; 136: 14389
  • 27 Huynh MH. V. Meyer TJ. Chem. Rev. 2007; 107: 5004
  • 28 Shu W. Nevada C. Angew. Chem. Int. Ed. 2017; 56: 1881
  • 29 Chu JC. K. Rovis T. Nature (London) 2016; 539: 272
  • 30 Choi GJ. Zhu Q. Miller DC. Gu CJ. Knowles RR. Nature (London) 2016; 539: 268
  • 31 Yayla HG. Wang H. Tarantino KT. Orbe HS. Knowles RR. J. Am. Chem. Soc. 2016; 138: 10794
  • 32 Musacchio AJ. Lainhart BC. Zhang X. Naguib SG. Sherwood TC. Knowles RR. Science (Washington, D. C.) 2017; 355: 727

    • Recent examples:
    • 33a Samanta S. Ravi C. Joshi A. Pappula V. Adimurthy S. Tetrahedron Lett. 2017; 58: 721
    • 33b Lv Y. Wang X. Cui H. Sun K. Pu W. Li G. Wu Y. He J. Ren X. RSC Adv. 2016; 6: 74917
    • 33c Xia X.-F. Zhu S.-L. Hu Q.-T. Chen C. Tetrahedron 2016; 72: 8000
    • 33d Zhang J.-Z. Tang Y. Adv. Synth. Catal. 2016; 358: 752
    • 33e Luo J. Zhang J. J. Org. Chem. 2016; 81: 9131
    • 33f Bag R. Sar D. Punniyamurthy T. Org. Lett. 2015; 17: 2010
    • 33g Xia X.-F. Gu Z. Liu W. Wang H. Xia Y. Gao H. Liu X. Liang Y.-M. J. Org. Chem. 2015; 80: 290

      Recent examples:
    • 34a Lu Q. Liu Z. Luo Y. Zhang G. Huang Z. Wang H. Liu C. Miller JT. Lei A. Org. Lett. 2015; 17: 3402
    • 34b Giglio BC. Alexanian EJ. Org. Lett. 2014; 16: 4304
    • 34c Quinn RK. Schmidt VA. Alexanian EJ. Chem. Sci. 2013; 4: 4030
    • 34d Schmidt VA. Alexanian EJ. Chem. Sci. 2012; 3: 1672
    • 34e Giglio BC. Schmidt VA. Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 13320
    • 34f Schmidt VA. Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 11402
    • 34g Schmidt VA. Alexanian EJ. Angew. Chem. Int. Ed. 2010; 49: 4491
  • 35 Recupero F. Punta C. Chem. Rev. 2007; 107: 3800
  • 36 Ishii Y. Nakayama K. Takeno M. Sakaguchi S. Iwahama T. Nishiyama Y. J. Org. Chem. 1995; 60: 3934
  • 37 Amaoka Y. Nagatomo M. Inoue M. Org. Lett. 2013; 15: 2160
  • 38 Ozawa J. Tashiro M. Ni J. Oisaki K. Kanai M. Chem. Sci. 2016; 7: 1904
  • 39 Dai Q. Jiang Y. Yu J.-T. Cheng J. Synthesis 2016; 48: 329
  • 40 Kubo T. Chatani N. Org. Lett. 2016; 18: 1698
  • 41 Li Q. Li Y. Hu W. Hu R. Li G. Lu H. Chem. Eur. J. 2016; 22: 12286
  • 42 Duan X.-Y. Zhou N.-N. Fang R. Yang X.-L. Yu W. Han B. Angew. Chem. Int. Ed. 2014; 53: 3158
    • 43a Liu R.-H. Wei D. Han B. Yu W. ACS Catal. 2016; 6: 6525
    • 43b Han B. Yang X.-L. Fang R. Yu W. Wang C. Duan X.-Y. Liu S. Angew. Chem. Int. Ed. 2012; 51: 8816

      Recent examples:
    • 44a Wang D. Wang F. Chen P. Liu Z. Liu G. Angew. Chem. Int. Ed. 2017; 56: 2054
    • 44b Yuan Y.-A. Lu D.-F. Chen Y.-R. Xu H. Angew. Chem. Int. Ed. 2016; 55: 534
    • 44c Fumagalli G. Rabet PT. G. Boyd S. Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11481
    • 44d Yin H. Wang T. Jiao N. Org. Lett. 2014; 16: 2302
    • 44e Matcha K. Narayan R. Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 7985
    • 44f Zhang B. Studer A. Org. Lett. 2013; 15: 4548
  • 45 Kong W. Merino E. Nevado C. Angew. Chem. Int. Ed. 2014; 53: 5078
    • 46a Fuentes N. Kong W. Fernández-Sánchez L. Merino E. Nevado C. J. Am. Chem. Soc. 2015; 137: 964
    • 46b Kong W. Fuentes N. García-Domínquez A. Merino E. Nevado C. Angew. Chem. Int. Ed. 2015; 54: 2487
  • 47 Sun X. Li X. Song S. Zhu Y. Liang Y.-F. Jiao N. J. Am. Chem. Soc. 2015; 137: 6059
  • 48 Taniguchi T. Ishibashi H. Org. Lett. 2010; 12: 124
  • 49 Taniguchi T. Fujii T. Ishibashi H. J. Org. Chem. 2010; 75: 8126
  • 50 Taniguchi T. Yajima A. Ishibashi H. Adv. Synth. Catal. 2011; 353: 2643
  • 51 Maity S. Manna S. Rana S. Naveen T. Mallick A. Maiti D. J. Am. Chem. Soc. 2013; 135: 3355
  • 52 Maity S. Naveen T. Sharma U. Maiti D. Org. Lett. 2013; 15: 3384
  • 53 Dutta U. Maity S. Kancherla R. Maiti D. Org. Lett. 2014; 16: 6302
  • 54 Shen T. Yuan Y. Jiao N. Chem. Commun. 2014; 50: 554
  • 55 Taniguchi T. Sugiura Y. Yajima A. Ishibashi H. Chem. Commun. 2013; 49: 2198
  • 56 Hirose D. Taniguchi T. Beilstein J. Org. Chem. 2013; 9: 1713
  • 57 Ishida S. Hirakawa F. Iwamoto T. J. Am. Chem. Soc. 2011; 133: 12968
  • 58 Hirakawa F. Ichikawa H. Ishida S. Iwamoto T. Organometallics 2015; 34: 2714
  • 59 Sunada Y. Ishida S. Hirakawa F. Shiota Y. Yoshizawa K. Kanegawa S. Sato O. Nagashima H. Iawamoto T. Chem. Sci. 2016; 7: 191
  • 60 Giffin NA. Hendsbee AD. Masuda JD. Dalton Trans. 2016; 45: 12636
  • 61 Sato Y. Kawaguchi S. Nomoto A. Ogawa A. Angew. Chem. Int. Ed. 2016; 55: 9700
  • 62 Ke J. Tang Y. Yi H. Li Y. Cheng Y. Liu C. Lei A. Angew. Chem. Int. Ed. 2015; 54: 6604
  • 63 Wang P. Tang S. Huang P. Lei A. Angew. Chem. Int. Ed. 2017; 56: 3009
    • 64a Studer A. Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
    • 64b Breder A. Ortgies S. Tetrahedron Lett. 2015; 56: 2843
  • 65 Huang W. Chen W. Wang G. Li J. Cheng X. Li G. ACS Catal. 2016; 6: 7471
  • 66 Cuthbertson JD. MacMillan DW. C. Nature (London) 2015; 519: 74
  • 67 Hashimoto T. Kawamata Y. Maruoka K. Nat. Chem. 2014; 6: 702
  • 68 Hashimoto T. Takino K. Hato K. Maruoka K. Angew. Chem. Int. Ed. 2016; 55: 8081
  • 69 Zhu X. Li P. Shi Q. Wang L. Green Chem. 2016; 18: 6373
  • 70 Deng Y. Wei X.-J. Wang H. Sun Y. Noël T. Wang X. Angew. Chem. Int. Ed. 2017; 56: 832
  • 71 Zheng D. Yu J. Wu J. Angew. Chem. Int. Ed. 2016; 55: 11925
  • 72 Zhang H. Hay EB. Geib SJ. Curran DP. J. Am. Chem. Soc. 2013; 135: 16610
  • 73 Ishida S. Hirakawa F. Furukawa K. Yoza K. Iwamoto T. Angew. Chem. Int. Ed. 2014; 53: 11172
  • 75 Fang Y. Zhu Z.-L. Xu P. Wang S.-Y. Ji S.-J. Green Chem. 2017; 19: 1613
  • 76 Cunha RL. O. R. Zukeman-Schpector J. Caracelli I. Comasseto JV. J. Organomet. Chem. 2006; 691: 4807
  • 77 Keppler AF. Prado FM. Cerchiaro G. Mascio PD. Comasseto JV. J. Organomet. Chem. 2008; 693: 3558
    • 78a Lee VY. Sekiguchi A. Eur. J. Inorg. Chem. 2005; 1209
    • 78b Chatgilialoglu C. In Organic Synthesis . Vol. 2. Renaud P. Sibi MP. Wiley-VCH; Weinheim: 2001: 407-504
  • 79 Bowman WR. Krintel SL. Schilling MB. Org. Biomol. Chem. 2004; 2: 585
    • 80a Radebner J. Eibel A. Leypold M. Gorsche C. Schuh L. Fischer R. Torvisco A. Neshchadin D. Geier R. Moszner N. Liska R. Gescheidt G. Haas M. Stueger H. Angew. Chem. Int. Ed. 2017; 56: 3103
    • 80b Neshchadin D. Rosspeintner A. Griesser M. Lang B. Mosquera-Vazquez S. Vauthey E. Gorelik V. Liska R. Hametner C. Ganster B. Saf R. Moszner N. Gescheidt G. J. Am. Chem. Soc. 2013; 135: 17314

      Recent reviews on Si-centered radical-mediated reactions:
    • 81a Shang X. Liu Z.-Q. Org. Biomol. Chem. 2016; 14: 7829
    • 81b Oestreich M. Angew. Chem. Int. Ed. 2016; 55: 494
  • 82 Zhang P. Le CC. MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
  • 83 Zhang L. Hang Z. Liu Z.-Q. Angew. Chem. Int. Ed. 2016; 55: 236
  • 84 Lin Y.-M. Lu G.-P. Wang R.-K. Yi W.-B. Org. Lett. 2017; 19: 1100
  • 85 Wu L.-J. Tan F.-L. Li M. Song R.-J. Li J.-H. Org. Chem. Front. 2017; 4: 350

    • Recent examples:
    • 86a Silva Valverde MF. Schweyen P. Gisinger D. Bannenberg T. Freytag M. Kleeberg C. Tamm M. Angew. Chem. Int. Ed. 2017; 56: 1135
    • 86b Rosenthal AJ. Devillard M. Miqueu K. Bouhadir G. Bourissou D. Angew. Chem. Int. Ed. 2015; 54: 9198
    • 86c Bissinger P. Braunschweig H. Damme A. Krummenacher I. Phukan AK. Radacki K. Sugawara S. Angew. Chem. Int. Ed. 2014; 53: 7360
    • 86d Lu D. Wu C. Li P. Chem. Eur. J. 2014; 20: 1630
    • 86e Aramaki Y. Omiya H. Yamashita M. Nakabayashi K. Ohkoshi S. Nozaki K. J. Am. Chem. Soc. 2012; 134: 19989
    • 87a Baban JA. Marti VP. J. Roberts BP. Tetrahedron Lett. 1985; 26: 1349
    • 87b Baban JA. Roberts BP. J. Chem. Soc., Perkin Trans. 2 1984; 1717
    • 87c Baban JA. Roberts BP. J. Chem. Soc., Chem. Commun. 1983; 1224
  • 88 Dang H.-S. Roberts BP. Tetrahedron Lett. 1992; 33: 6169
  • 89 Kawamoto T. Ryu I. Org. Biomol. Chem. 2014; 12: 9733
    • 90a Curran DP. Solovyev A. Makhlouf Brahmi M. Fensterbank L. Malacria M. Lacôte E. Angew. Chem. Int. Ed. 2011; 50: 10294
    • 90b Ueng SH. Makhlouf Brahmi M. Derat É. Fensterbank L. Lacôte E. Malacria M. Curran DP. J. Am. Chem. Soc. 2008; 130: 10082
  • 91 Pan X. Lacôte E. Lalevée J. Curran DP. J. Am. Chem. Soc. 2012; 134: 5669
  • 92 Kawamoto T. Geib SJ. Curran DP. J. Am. Chem. Soc. 2015; 137: 8617
    • 93a Lacôte E. Curran DP. Lalevée J. Chimia 2012; 66: 382
    • 93b Lalevée J. Telitel S. Tehfe MA. Fouassier JP. Curran DP. Lacôte E. Angew. Chem. Int. Ed. 2012; 51: 5958
    • 93c Tehfe M.-A. Monot J. Makhlouf Brahmi M. Bonin-Dubarle H. Curran DP. Malacria M. Fensterbank L. Lacôte E. Lalevée J. Fouassier J.-P. Polym. Chem. 2011; 2: 625
    • 93d Tehfe M.-A. Makhlouf Brahmi M. Fouassier J.-P. Curran DP. Malacria M. Fensterbank L. Lacôte E. Lalevée J. Macromolecules 2010; 43: 2261
  • 94 Yoshimura A. Takamachi Y. Han L.-B. Ogawa A. Chem. Eur. J. 2015; 21: 13930
  • 95 Yoshimura A. Takamachi Y. Mihara K. Saeki T. Kawaguchi S. Han L.-B. Nomoto A. Ogawa A. Tetrahedron 2016; 72: 7832
  • 96 Watanabe T. Hirose D. Curran DP. Taniguchi T. Chem. Eur. J. 2017; 23: 5404
  • 97 Zhang L. Jiao L. J. Am. Chem. Soc. 2017; 139: 607